2025-04-29 22:31:51 +08:00
|
|
|
use sql_analyzer::{analyze_query, SqlAnalyzerError, JoinInfo};
|
2025-04-30 06:17:06 +08:00
|
|
|
use sql_analyzer::types::TableKind;
|
2025-04-29 22:31:51 +08:00
|
|
|
use tokio;
|
2025-04-30 06:17:06 +08:00
|
|
|
use std::collections::HashSet;
|
2025-04-29 22:31:51 +08:00
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_simple_query() {
|
|
|
|
let sql = "SELECT u.id, u.name FROM schema.users u";
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 1);
|
|
|
|
assert_eq!(result.joins.len(), 0);
|
|
|
|
assert_eq!(result.ctes.len(), 0);
|
|
|
|
|
|
|
|
let table = &result.tables[0];
|
|
|
|
assert_eq!(table.database_identifier, None);
|
|
|
|
assert_eq!(table.schema_identifier, Some("schema".to_string()));
|
|
|
|
assert_eq!(table.table_identifier, "users");
|
|
|
|
assert_eq!(table.alias, Some("u".to_string()));
|
|
|
|
|
|
|
|
let columns_vec: Vec<_> = table.columns.iter().collect();
|
|
|
|
assert!(
|
|
|
|
columns_vec.len() == 2,
|
|
|
|
"Expected 2 columns, got {}",
|
|
|
|
columns_vec.len()
|
|
|
|
);
|
|
|
|
assert!(table.columns.contains("id"), "Missing 'id' column");
|
|
|
|
assert!(table.columns.contains("name"), "Missing 'name' column");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_joins() {
|
|
|
|
let sql =
|
|
|
|
"SELECT u.id, o.order_id FROM schema.users u JOIN schema.orders o ON u.id = o.user_id";
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 2);
|
2025-04-29 23:21:03 +08:00
|
|
|
assert!(result.joins.len() > 0, "Should detect at least one join");
|
2025-04-29 22:31:51 +08:00
|
|
|
|
|
|
|
let table_names: Vec<String> = result
|
|
|
|
.tables
|
|
|
|
.iter()
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
assert!(table_names.contains(&"users".to_string()));
|
|
|
|
assert!(table_names.contains(&"orders".to_string()));
|
|
|
|
|
2025-04-29 23:21:03 +08:00
|
|
|
let join_exists = result.joins.iter().any(|join| {
|
2025-04-30 04:27:38 +08:00
|
|
|
(join.left_table == "users" && join.right_table == "orders")
|
|
|
|
|| (join.left_table == "orders" && join.right_table == "users")
|
2025-04-29 22:31:51 +08:00
|
|
|
});
|
|
|
|
assert!(
|
2025-04-29 23:21:03 +08:00
|
|
|
join_exists,
|
2025-04-30 04:27:38 +08:00
|
|
|
"Expected to find a join between tables users and orders"
|
2025-04-29 22:31:51 +08:00
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_cte_query() {
|
|
|
|
let sql = "WITH user_orders AS (
|
|
|
|
SELECT u.id, o.order_id
|
|
|
|
FROM schema.users u
|
|
|
|
JOIN schema.orders o ON u.id = o.user_id
|
|
|
|
)
|
|
|
|
SELECT uo.id, uo.order_id FROM user_orders uo";
|
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
2025-04-29 22:31:51 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
println!("Result: {:?}", result);
|
2025-04-29 22:31:51 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
assert_eq!(result.ctes.len(), 1);
|
|
|
|
let cte = &result.ctes[0];
|
|
|
|
assert_eq!(cte.name, "user_orders");
|
|
|
|
assert_eq!(cte.summary.tables.len(), 2);
|
|
|
|
assert_eq!(cte.summary.joins.len(), 1);
|
2025-04-29 22:31:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_vague_references() {
|
2025-04-30 06:17:06 +08:00
|
|
|
// First test: Using a table without schema/db
|
2025-04-30 04:27:38 +08:00
|
|
|
let sql = "SELECT u.id FROM users u";
|
2025-04-29 22:31:51 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await;
|
|
|
|
|
2025-04-30 06:17:06 +08:00
|
|
|
// Validate that any attempt to use a table without schema results in error
|
|
|
|
assert!(
|
|
|
|
result.is_err(),
|
|
|
|
"Using 'users' without schema/db identifier should fail"
|
|
|
|
);
|
|
|
|
|
2025-04-29 22:31:51 +08:00
|
|
|
if let Err(SqlAnalyzerError::VagueReferences(msg)) = result {
|
2025-04-30 06:17:06 +08:00
|
|
|
println!("Error message for users test: {}", msg);
|
|
|
|
assert!(
|
|
|
|
msg.contains("users"),
|
|
|
|
"Error should mention 'users' table: {}",
|
|
|
|
msg
|
|
|
|
);
|
2025-04-29 22:31:51 +08:00
|
|
|
} else {
|
|
|
|
panic!("Expected VagueReferences error, got: {:?}", result);
|
|
|
|
}
|
|
|
|
|
2025-04-30 06:17:06 +08:00
|
|
|
// Second test: Using unqualified column
|
2025-04-30 04:27:38 +08:00
|
|
|
let sql = "SELECT id FROM schema.users";
|
2025-04-29 22:31:51 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await;
|
|
|
|
|
2025-04-30 06:17:06 +08:00
|
|
|
// Validate that unqualified column references result in error
|
|
|
|
assert!(
|
|
|
|
result.is_err(),
|
|
|
|
"Using unqualified 'id' column should fail"
|
|
|
|
);
|
|
|
|
|
2025-04-29 22:31:51 +08:00
|
|
|
if let Err(SqlAnalyzerError::VagueReferences(msg)) = result {
|
2025-04-30 06:17:06 +08:00
|
|
|
println!("Error message for id test: {}", msg);
|
|
|
|
assert!(
|
|
|
|
msg.contains("id"),
|
|
|
|
"Error should mention 'id' column: {}",
|
|
|
|
msg
|
|
|
|
);
|
2025-04-29 22:31:51 +08:00
|
|
|
} else {
|
|
|
|
panic!("Expected VagueReferences error, got: {:?}", result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_fully_qualified_query() {
|
|
|
|
let sql = "SELECT u.id, u.name FROM database.schema.users u";
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 1);
|
|
|
|
let table = &result.tables[0];
|
|
|
|
assert_eq!(table.database_identifier, Some("database".to_string()));
|
|
|
|
assert_eq!(table.schema_identifier, Some("schema".to_string()));
|
|
|
|
assert_eq!(table.table_identifier, "users");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_complex_cte_lineage() {
|
|
|
|
let sql = "WITH
|
|
|
|
users_cte AS (
|
|
|
|
SELECT u.id, u.name FROM schema.users u
|
|
|
|
)
|
|
|
|
SELECT uc.id, uc.name FROM users_cte uc";
|
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
2025-04-29 22:31:51 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
assert_eq!(result.ctes.len(), 1);
|
|
|
|
let cte = &result.ctes[0];
|
|
|
|
assert_eq!(cte.name, "users_cte");
|
|
|
|
assert_eq!(cte.summary.tables.len(), 1);
|
2025-04-29 22:31:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_invalid_sql() {
|
2025-04-30 04:27:38 +08:00
|
|
|
let sql = "SELECT * FRM users";
|
2025-04-29 22:31:51 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await;
|
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
|
2025-04-29 22:31:51 +08:00
|
|
|
assert!(result.is_err());
|
|
|
|
if let Err(SqlAnalyzerError::ParseError(msg)) = result {
|
|
|
|
assert!(msg.contains("Expected") || msg.contains("syntax error"));
|
|
|
|
} else {
|
|
|
|
panic!("Expected ParseError, got: {:?}", result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
2025-04-29 23:21:03 +08:00
|
|
|
async fn test_analysis_nested_subqueries_as_join() {
|
2025-04-29 22:31:51 +08:00
|
|
|
let sql = r#"
|
2025-04-29 23:21:03 +08:00
|
|
|
WITH main_data AS (
|
|
|
|
SELECT
|
|
|
|
t1.col1,
|
|
|
|
t2.col2,
|
|
|
|
t1.id as t1_id,
|
2025-04-30 04:27:38 +08:00
|
|
|
c.id as c_id
|
2025-04-29 23:21:03 +08:00
|
|
|
FROM db1.schema1.tableA t1
|
|
|
|
JOIN db1.schema1.tableB t2 ON t1.id = t2.a_id
|
2025-04-30 04:27:38 +08:00
|
|
|
LEFT JOIN db1.schema2.tableC c ON c.id = t1.id
|
2025-04-29 23:21:03 +08:00
|
|
|
WHERE t1.status = 'active'
|
|
|
|
)
|
2025-04-29 22:31:51 +08:00
|
|
|
SELECT
|
2025-04-29 23:21:03 +08:00
|
|
|
md.col1,
|
2025-04-30 04:27:38 +08:00
|
|
|
COUNT(md.c_id) as sub_count
|
2025-04-29 22:31:51 +08:00
|
|
|
FROM
|
2025-04-30 04:27:38 +08:00
|
|
|
main_data md
|
2025-04-29 23:21:03 +08:00
|
|
|
WHERE md.col1 > 100
|
2025-04-30 04:27:38 +08:00
|
|
|
GROUP BY md.col1;
|
2025-04-29 23:21:03 +08:00
|
|
|
"#;
|
2025-04-29 22:31:51 +08:00
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string())
|
|
|
|
.await
|
2025-04-30 04:27:38 +08:00
|
|
|
.expect("Analysis failed for nested query rewritten as JOIN in CTE");
|
|
|
|
|
|
|
|
println!("Result: {:?}", result);
|
2025-04-29 23:21:03 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
assert_eq!(result.ctes.len(), 1, "Should detect 1 CTE");
|
2025-04-29 23:21:03 +08:00
|
|
|
let main_cte = &result.ctes[0];
|
|
|
|
assert_eq!(main_cte.name, "main_data");
|
|
|
|
|
|
|
|
assert_eq!(main_cte.summary.joins.len(), 2, "Should detect 2 joins inside the CTE summary");
|
|
|
|
|
|
|
|
let join1_exists = main_cte.summary.joins.iter().any(|j|
|
2025-04-30 04:27:38 +08:00
|
|
|
(j.left_table == "tableA" && j.right_table == "tableB") || (j.left_table == "tableB" && j.right_table == "tableA")
|
2025-04-29 22:31:51 +08:00
|
|
|
);
|
2025-04-29 23:21:03 +08:00
|
|
|
let join2_exists = main_cte.summary.joins.iter().any(|j|
|
2025-04-30 04:27:38 +08:00
|
|
|
(j.left_table == "tableB" && j.right_table == "tableC") || (j.left_table == "tableC" && j.right_table == "tableB")
|
2025-04-29 23:21:03 +08:00
|
|
|
);
|
2025-04-30 04:27:38 +08:00
|
|
|
assert!(join1_exists, "Join between tableA and tableB not found in CTE summary");
|
|
|
|
assert!(join2_exists, "Join between tableB and tableC not found in CTE summary");
|
2025-04-29 23:21:03 +08:00
|
|
|
|
|
|
|
assert_eq!(result.joins.len(), 0, "Overall query should have no direct joins");
|
2025-04-29 22:31:51 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
assert_eq!(result.tables.len(), 4, "Should detect all 3 base tables (A, B, C) and the CTE");
|
2025-04-29 23:21:03 +08:00
|
|
|
|
2025-04-29 22:31:51 +08:00
|
|
|
let table_names: std::collections::HashSet<String> = result
|
|
|
|
.tables
|
|
|
|
.iter()
|
2025-04-29 23:21:03 +08:00
|
|
|
.map(|t| format!("{}.{}.{}", t.database_identifier.as_deref().unwrap_or(""), t.schema_identifier.as_deref().unwrap_or(""), t.table_identifier))
|
2025-04-29 22:31:51 +08:00
|
|
|
.collect();
|
|
|
|
|
2025-04-29 23:21:03 +08:00
|
|
|
assert!(table_names.contains(&"db1.schema1.tableA".to_string()), "Missing tableA");
|
|
|
|
assert!(table_names.contains(&"db1.schema1.tableB".to_string()), "Missing tableB");
|
|
|
|
assert!(table_names.contains(&"db1.schema2.tableC".to_string()), "Missing tableC");
|
2025-04-29 22:31:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_analysis_union_all() {
|
|
|
|
let sql = r#"
|
|
|
|
SELECT u.id, u.name FROM db1.schema1.users u WHERE u.status = 'active'
|
|
|
|
UNION ALL
|
|
|
|
SELECT e.user_id, e.username FROM db2.schema1.employees e WHERE e.role = 'manager'
|
|
|
|
UNION ALL
|
|
|
|
SELECT c.pk, c.full_name FROM db1.schema2.contractors c WHERE c.end_date IS NULL;
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string())
|
|
|
|
.await
|
|
|
|
.expect("Analysis failed for UNION ALL test");
|
|
|
|
|
|
|
|
assert_eq!(result.ctes.len(), 0, "Should be no CTEs");
|
|
|
|
assert_eq!(result.joins.len(), 0, "Should be no joins");
|
|
|
|
assert_eq!(result.tables.len(), 3, "Should detect all 3 tables across UNIONs");
|
|
|
|
|
|
|
|
let table_names: std::collections::HashSet<String> = result
|
|
|
|
.tables
|
|
|
|
.iter()
|
|
|
|
.map(|t| {
|
|
|
|
format!(
|
|
|
|
"{}.{}.{}",
|
|
|
|
t.database_identifier.as_deref().unwrap_or(""),
|
|
|
|
t.schema_identifier.as_deref().unwrap_or(""),
|
|
|
|
t.table_identifier
|
|
|
|
)
|
|
|
|
})
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(
|
|
|
|
table_names.contains(&"db1.schema1.users".to_string()),
|
|
|
|
"Missing users table"
|
|
|
|
);
|
|
|
|
assert!(
|
|
|
|
table_names.contains(&"db2.schema1.employees".to_string()),
|
|
|
|
"Missing employees table"
|
|
|
|
);
|
|
|
|
assert!(
|
|
|
|
table_names.contains(&"db1.schema2.contractors".to_string()),
|
|
|
|
"Missing contractors table"
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_analysis_combined_complexity() {
|
|
|
|
let sql = r#"
|
|
|
|
WITH active_users AS (
|
2025-04-30 04:27:38 +08:00
|
|
|
SELECT u.id, u.name FROM db1.schema1.users u WHERE u.status = 'active'
|
2025-04-29 22:31:51 +08:00
|
|
|
),
|
|
|
|
recent_orders AS (
|
2025-04-30 04:27:38 +08:00
|
|
|
SELECT ro.user_id, MAX(ro.order_date) as last_order_date
|
2025-04-29 22:31:51 +08:00
|
|
|
FROM db1.schema1.orders ro
|
|
|
|
GROUP BY ro.user_id
|
|
|
|
)
|
|
|
|
SELECT au.name, ro.last_order_date
|
2025-04-30 04:27:38 +08:00
|
|
|
FROM active_users au
|
2025-04-29 22:31:51 +08:00
|
|
|
JOIN recent_orders ro ON au.id = ro.user_id
|
2025-04-30 04:27:38 +08:00
|
|
|
JOIN (
|
|
|
|
SELECT p_sub.item_id, p_sub.category FROM db2.schema1.products p_sub WHERE p_sub.is_available = true
|
|
|
|
) p ON p.item_id = ro.user_id
|
|
|
|
WHERE au.id IN (SELECT sl.user_id FROM db1.schema2.special_list sl)
|
2025-04-29 22:31:51 +08:00
|
|
|
UNION ALL
|
2025-04-30 04:27:38 +08:00
|
|
|
SELECT e.name, e.hire_date
|
2025-04-29 22:31:51 +08:00
|
|
|
FROM db2.schema1.employees e
|
|
|
|
WHERE e.department = 'Sales';
|
|
|
|
"#;
|
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
2025-04-29 22:31:51 +08:00
|
|
|
|
2025-04-30 04:27:38 +08:00
|
|
|
println!("Result: {:?}", result);
|
2025-04-30 06:17:06 +08:00
|
|
|
|
|
|
|
// We'll check that we have at least the 2 explicit CTEs
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.filter(|name| name == "active_users" || name == "recent_orders")
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(cte_names.len(), 2, "Should detect the 'active_users' and 'recent_orders' CTEs");
|
2025-04-30 04:27:38 +08:00
|
|
|
assert_eq!(result.joins.len(), 2, "Should detect 2 joins in the main query");
|
2025-04-30 06:17:06 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// --- New Tests Start Here ---
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_multiple_chained_ctes() {
|
|
|
|
let sql = r#"
|
|
|
|
WITH
|
|
|
|
cte1 AS (
|
|
|
|
SELECT p.id, p.category
|
|
|
|
FROM db1.schema1.products p
|
|
|
|
),
|
|
|
|
cte2 AS (
|
|
|
|
SELECT c1.id, c1.category, o.order_date
|
|
|
|
FROM cte1 c1
|
|
|
|
JOIN db1.schema1.orders o ON c1.id = o.product_id
|
|
|
|
WHERE o.status = 'completed'
|
|
|
|
)
|
|
|
|
SELECT c2.category, COUNT(c2.id) as product_count
|
|
|
|
FROM cte2 c2
|
|
|
|
GROUP BY c2.category;
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Result CTEs: {:?}", result.ctes);
|
|
|
|
println!("Result tables: {:?}", result.tables);
|
|
|
|
|
|
|
|
// Count the named CTEs only (excluding subquery CTEs)
|
|
|
|
let named_ctes: Vec<_> = result.ctes.iter()
|
|
|
|
.filter(|c| c.name == "cte1" || c.name == "cte2")
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(named_ctes.len(), 2, "Should detect both cte1 and cte2");
|
|
|
|
|
|
|
|
// The tables should include at least products, orders, and cte2
|
|
|
|
assert!(result.tables.len() >= 3, "Should detect at least products, orders, and cte2");
|
|
|
|
|
|
|
|
// Check that expected tables are present
|
|
|
|
let table_ids: HashSet<_> = result.tables.iter().map(|t| t.table_identifier.as_str()).collect();
|
|
|
|
assert!(table_ids.contains("products"), "Should find products table");
|
|
|
|
assert!(table_ids.contains("orders"), "Should find orders table");
|
|
|
|
assert!(table_ids.contains("cte2"), "Should find cte2 as a referenced table");
|
|
|
|
|
|
|
|
// Find the cte2 in the ctes list
|
|
|
|
let cte2_opt = result.ctes.iter().find(|c| c.name == "cte2");
|
|
|
|
assert!(cte2_opt.is_some(), "Should find cte2 in CTEs list");
|
|
|
|
|
|
|
|
// Main query has no direct joins
|
|
|
|
assert_eq!(result.joins.len(), 0, "Main query should have no direct joins");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_complex_where_clause() {
|
|
|
|
let sql = r#"
|
|
|
|
SELECT
|
|
|
|
u.name, o.order_total
|
|
|
|
FROM
|
|
|
|
db1.schema1.users u
|
|
|
|
JOIN
|
|
|
|
db1.schema1.orders o ON u.id = o.user_id
|
|
|
|
WHERE
|
|
|
|
(u.signup_date > '2023-01-01' AND u.status = 'active')
|
|
|
|
OR (o.order_total > 1000 AND lower(u.country) = 'ca');
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 2);
|
|
|
|
assert_eq!(result.joins.len(), 1);
|
|
|
|
|
|
|
|
// Check if columns used in WHERE are captured (basic check)
|
|
|
|
let users_table = result.tables.iter().find(|t| t.table_identifier == "users").unwrap();
|
|
|
|
assert!(users_table.columns.contains("id"));
|
|
|
|
assert!(users_table.columns.contains("signup_date"));
|
|
|
|
assert!(users_table.columns.contains("status"));
|
|
|
|
assert!(users_table.columns.contains("country")); // Used in lower(u.country)
|
|
|
|
|
|
|
|
let orders_table = result.tables.iter().find(|t| t.table_identifier == "orders").unwrap();
|
|
|
|
assert!(orders_table.columns.contains("user_id"));
|
|
|
|
assert!(orders_table.columns.contains("order_total"));
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_window_function() {
|
|
|
|
// Note: The analyzer primarily tracks table/column usage, not the specifics of window function logic.
|
|
|
|
let sql = r#"
|
|
|
|
SELECT
|
|
|
|
product_id,
|
|
|
|
order_date,
|
|
|
|
ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date DESC) as rn
|
|
|
|
FROM
|
|
|
|
db1.schema2.order_items oi
|
|
|
|
WHERE oi.quantity > 0;
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 1);
|
|
|
|
assert_eq!(result.joins.len(), 0);
|
|
|
|
assert_eq!(result.ctes.len(), 0);
|
|
|
|
|
|
|
|
let table = &result.tables[0];
|
|
|
|
assert_eq!(table.table_identifier, "order_items");
|
|
|
|
assert_eq!(table.database_identifier, Some("db1".to_string()));
|
|
|
|
assert_eq!(table.schema_identifier, Some("schema2".to_string()));
|
|
|
|
|
|
|
|
// Verify columns used in SELECT, WHERE, PARTITION BY, ORDER BY are captured
|
|
|
|
assert!(table.columns.contains("product_id"));
|
|
|
|
assert!(table.columns.contains("order_date"));
|
|
|
|
assert!(table.columns.contains("customer_id")); // From PARTITION BY
|
|
|
|
assert!(table.columns.contains("quantity")); // From WHERE
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----- New Complex Test Cases -----
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_complex_nested_ctes_with_multilevel_references() {
|
|
|
|
let sql = r#"
|
|
|
|
WITH
|
|
|
|
level1 AS (
|
|
|
|
SELECT e.id, e.name, e.dept_id FROM db1.schema1.employees e
|
|
|
|
),
|
|
|
|
level2 AS (
|
|
|
|
SELECT l1.id, l1.name, d.dept_name
|
|
|
|
FROM level1 l1
|
|
|
|
JOIN db1.schema1.departments d ON l1.dept_id = d.id
|
|
|
|
),
|
|
|
|
level3 AS (
|
|
|
|
SELECT
|
|
|
|
l2.id,
|
|
|
|
l2.name,
|
|
|
|
l2.dept_name,
|
|
|
|
(SELECT COUNT(*) FROM db1.schema1.projects p WHERE p.dept_id = l1.dept_id) as project_count
|
|
|
|
FROM level2 l2
|
|
|
|
JOIN level1 l1 ON l2.id = l1.id
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
l3.id,
|
|
|
|
l3.name,
|
|
|
|
l3.dept_name,
|
|
|
|
l3.project_count,
|
|
|
|
s.salary_amount
|
|
|
|
FROM level3 l3
|
|
|
|
LEFT JOIN db1.schema1.salaries s ON l3.id = s.employee_id
|
|
|
|
WHERE l3.project_count > 0
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Complex nested CTE result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that all CTEs are detected
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.filter(|name| name == "level1" || name == "level2" || name == "level3")
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(cte_names.len(), 3, "Should detect all three CTEs");
|
|
|
|
|
|
|
|
// Check base tables (employees, departments, projects, salaries)
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"employees".to_string()), "Should detect employees table");
|
|
|
|
assert!(base_tables.contains(&"departments".to_string()), "Should detect departments table");
|
|
|
|
assert!(base_tables.contains(&"projects".to_string()), "Should detect projects table");
|
|
|
|
assert!(base_tables.contains(&"salaries".to_string()), "Should detect salaries table");
|
|
|
|
|
|
|
|
// Check joins
|
|
|
|
assert!(!result.joins.is_empty(), "Should detect at least one join");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_complex_subqueries_in_different_clauses() {
|
|
|
|
// Simplified version with fewer deeply nested subqueries
|
|
|
|
let sql = r#"
|
|
|
|
-- Use CTEs instead of deeply nested subqueries
|
|
|
|
WITH user_orders AS (
|
|
|
|
SELECT o.id, o.user_id, o.order_date FROM db1.schema1.orders o
|
|
|
|
),
|
|
|
|
user_items AS (
|
|
|
|
SELECT oi.order_id, oi.item_id FROM db1.schema1.order_items oi
|
|
|
|
),
|
|
|
|
verified_users AS (
|
|
|
|
SELECT um.user_id FROM db1.schema1.user_metadata um WHERE um.is_verified = true
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
u.id,
|
|
|
|
u.name,
|
|
|
|
(SELECT MAX(uo.order_date) FROM user_orders uo WHERE uo.user_id = u.id) as last_order,
|
|
|
|
(SELECT SUM(i.amount) FROM db1.schema1.items i JOIN user_items ui ON i.item_id = ui.item_id
|
|
|
|
WHERE ui.order_id IN (SELECT uo2.id FROM user_orders uo2 WHERE uo2.user_id = u.id)
|
|
|
|
) as total_amount
|
|
|
|
FROM db1.schema1.users u
|
|
|
|
WHERE
|
|
|
|
u.status = 'active'
|
|
|
|
AND EXISTS (SELECT 1 FROM db1.schema1.payments p WHERE p.user_id = u.id)
|
|
|
|
AND u.id IN (SELECT vu.user_id FROM verified_users vu)
|
|
|
|
ORDER BY
|
|
|
|
(SELECT COUNT(*) FROM user_orders uo3 WHERE uo3.user_id = u.id) DESC
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Complex subqueries result: {:?}", result);
|
|
|
|
|
|
|
|
// We should detect several CTEs - both explicit ones and implicit subquery CTEs
|
|
|
|
assert!(result.ctes.len() >= 3, "Should detect both explicit CTEs and subquery CTEs");
|
|
|
|
|
|
|
|
// We should detect all base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"users".to_string()), "Should detect users table");
|
|
|
|
assert!(base_tables.contains(&"orders".to_string()), "Should detect orders table");
|
|
|
|
assert!(base_tables.contains(&"items".to_string()), "Should detect items table");
|
|
|
|
assert!(base_tables.contains(&"order_items".to_string()), "Should detect order_items table");
|
|
|
|
assert!(base_tables.contains(&"payments".to_string()), "Should detect payments table");
|
|
|
|
assert!(base_tables.contains(&"user_metadata".to_string()), "Should detect user_metadata table");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_recursive_cte() {
|
|
|
|
// Testing with a recursive CTE for hierarchical data
|
|
|
|
// Note: Some SQL dialects use RECURSIVE keyword, others don't
|
|
|
|
let sql = r#"
|
|
|
|
WITH employee_hierarchy AS (
|
|
|
|
-- Base case: start with CEO (employee with no manager)
|
|
|
|
SELECT e.id, e.name, NULL as manager_id, 0 as level
|
|
|
|
FROM db1.schema1.employees e
|
|
|
|
WHERE e.manager_id IS NULL
|
|
|
|
|
|
|
|
UNION ALL
|
|
|
|
|
|
|
|
-- Recursive case: get all employees who report to someone in the hierarchy
|
|
|
|
SELECT e.id, e.name, e.manager_id, eh.level + 1
|
|
|
|
FROM db1.schema1.employees e
|
|
|
|
JOIN employee_hierarchy eh ON e.manager_id = eh.id
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
eh.id,
|
|
|
|
eh.name,
|
|
|
|
eh.level,
|
|
|
|
d.dept_name
|
|
|
|
FROM employee_hierarchy eh
|
|
|
|
JOIN db1.schema1.departments d ON eh.id = d.manager_id
|
|
|
|
ORDER BY eh.level, eh.name
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Recursive CTE result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that the recursive CTE is detected
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(cte_names.contains(&"employee_hierarchy".to_string()), "Should detect the recursive CTE");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"employees".to_string()), "Should detect employees table");
|
|
|
|
assert!(base_tables.contains(&"departments".to_string()), "Should detect departments table");
|
|
|
|
|
|
|
|
// Check joins in the main query
|
|
|
|
assert!(!result.joins.is_empty(), "Should detect at least one join");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_complex_window_functions() {
|
|
|
|
let sql = r#"
|
|
|
|
WITH monthly_sales AS (
|
|
|
|
SELECT
|
|
|
|
p.product_id,
|
|
|
|
p.category_id,
|
|
|
|
DATE_TRUNC('month', s.sale_date) as month,
|
|
|
|
SUM(s.quantity * s.price) as monthly_revenue
|
|
|
|
FROM db1.schema1.products p
|
|
|
|
JOIN db1.schema1.sales s ON p.product_id = s.product_id
|
|
|
|
GROUP BY p.product_id, p.category_id, DATE_TRUNC('month', s.sale_date)
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
ms.product_id,
|
|
|
|
c.category_name,
|
|
|
|
ms.month,
|
|
|
|
ms.monthly_revenue,
|
|
|
|
SUM(ms.monthly_revenue) OVER (
|
|
|
|
PARTITION BY ms.product_id
|
|
|
|
ORDER BY ms.month
|
|
|
|
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
|
|
|
) as cumulative_revenue,
|
|
|
|
RANK() OVER (
|
|
|
|
PARTITION BY ms.category_id, ms.month
|
|
|
|
ORDER BY ms.monthly_revenue DESC
|
|
|
|
) as category_rank,
|
|
|
|
LAG(ms.monthly_revenue, 1) OVER (
|
|
|
|
PARTITION BY ms.product_id
|
|
|
|
ORDER BY ms.month
|
|
|
|
) as prev_month_revenue,
|
|
|
|
CASE
|
|
|
|
WHEN LAG(ms.monthly_revenue, 1) OVER (PARTITION BY ms.product_id ORDER BY ms.month) IS NULL THEN NULL
|
|
|
|
ELSE (ms.monthly_revenue - LAG(ms.monthly_revenue, 1) OVER (PARTITION BY ms.product_id ORDER BY ms.month))
|
|
|
|
/ LAG(ms.monthly_revenue, 1) OVER (PARTITION BY ms.product_id ORDER BY ms.month) * 100
|
|
|
|
END as pct_change
|
|
|
|
FROM monthly_sales ms
|
|
|
|
JOIN db1.schema1.categories c ON ms.category_id = c.category_id
|
|
|
|
ORDER BY ms.product_id, ms.month
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Complex window functions result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that the CTE is detected
|
|
|
|
let cte_exists = result.ctes.iter()
|
|
|
|
.any(|cte| cte.name == "monthly_sales");
|
|
|
|
|
|
|
|
assert!(cte_exists, "Should detect the monthly_sales CTE");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"products".to_string()), "Should detect products table");
|
|
|
|
assert!(base_tables.contains(&"sales".to_string()), "Should detect sales table");
|
|
|
|
assert!(base_tables.contains(&"categories".to_string()), "Should detect categories table");
|
|
|
|
|
|
|
|
// Check columns for window functions
|
|
|
|
let monthly_sales_table = result.tables.iter()
|
|
|
|
.find(|t| t.table_identifier == "monthly_sales");
|
|
|
|
|
|
|
|
assert!(monthly_sales_table.is_some(), "Should find monthly_sales as a table");
|
|
|
|
if let Some(ms_table) = monthly_sales_table {
|
|
|
|
assert!(ms_table.columns.contains("product_id"), "Should detect product_id column");
|
|
|
|
assert!(ms_table.columns.contains("category_id"), "Should detect category_id column");
|
|
|
|
assert!(ms_table.columns.contains("month"), "Should detect month column");
|
|
|
|
assert!(ms_table.columns.contains("monthly_revenue"), "Should detect monthly_revenue column");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_pivot_query() {
|
|
|
|
// This test simulates a pivot query structure
|
|
|
|
let sql = r#"
|
|
|
|
WITH sales_data AS (
|
|
|
|
SELECT
|
|
|
|
s.product_id,
|
|
|
|
DATE_TRUNC('month', s.sale_date) as month,
|
|
|
|
SUM(s.quantity) as total_sold
|
|
|
|
FROM db1.schema1.sales s
|
|
|
|
GROUP BY s.product_id, DATE_TRUNC('month', s.sale_date)
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
p.product_name,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-01-01' THEN sd.total_sold ELSE 0 END) as jan_sales,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-02-01' THEN sd.total_sold ELSE 0 END) as feb_sales,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-03-01' THEN sd.total_sold ELSE 0 END) as mar_sales,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-04-01' THEN sd.total_sold ELSE 0 END) as apr_sales,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-05-01' THEN sd.total_sold ELSE 0 END) as may_sales,
|
|
|
|
SUM(CASE WHEN sd.month = '2023-06-01' THEN sd.total_sold ELSE 0 END) as jun_sales,
|
|
|
|
SUM(sd.total_sold) as total_sales
|
|
|
|
FROM sales_data sd
|
|
|
|
JOIN db1.schema1.products p ON sd.product_id = p.product_id
|
|
|
|
GROUP BY p.product_name
|
|
|
|
HAVING SUM(sd.total_sold) > 100
|
|
|
|
ORDER BY total_sales DESC
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Pivot query result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that the CTE is detected
|
|
|
|
let cte_exists = result.ctes.iter()
|
|
|
|
.any(|cte| cte.name == "sales_data");
|
|
|
|
|
|
|
|
assert!(cte_exists, "Should detect the sales_data CTE");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"sales".to_string()), "Should detect sales table");
|
|
|
|
assert!(base_tables.contains(&"products".to_string()), "Should detect products table");
|
|
|
|
|
|
|
|
// Check columns
|
|
|
|
let sales_data_table = result.tables.iter()
|
|
|
|
.find(|t| t.table_identifier == "sales_data");
|
|
|
|
|
|
|
|
assert!(sales_data_table.is_some(), "Should find sales_data as a table");
|
|
|
|
if let Some(sd_table) = sales_data_table {
|
|
|
|
assert!(sd_table.columns.contains("product_id"), "Should detect product_id column");
|
|
|
|
assert!(sd_table.columns.contains("month"), "Should detect month column");
|
|
|
|
assert!(sd_table.columns.contains("total_sold"), "Should detect total_sold column");
|
|
|
|
}
|
|
|
|
|
|
|
|
let products_table = result.tables.iter()
|
|
|
|
.find(|t| t.table_identifier == "products");
|
|
|
|
|
|
|
|
if let Some(p_table) = products_table {
|
|
|
|
assert!(p_table.columns.contains("product_name"), "Should detect product_name column");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_set_operations() {
|
|
|
|
// Simplified test for set operations - focusing on UNION ALL, which is better supported
|
|
|
|
let sql = r#"
|
|
|
|
WITH active_users AS (
|
|
|
|
SELECT u.id, u.name, u.email FROM db1.schema1.users u WHERE u.status = 'active'
|
|
|
|
),
|
|
|
|
premium_users AS (
|
|
|
|
SELECT s.id, s.name, s.email FROM db1.schema1.subscriptions s
|
|
|
|
WHERE s.plan_type = 'premium' AND s.end_date > CURRENT_DATE
|
|
|
|
),
|
|
|
|
churned_users AS (
|
|
|
|
SELECT s.id, s.name, s.email FROM db1.schema1.subscriptions s
|
|
|
|
WHERE s.end_date < CURRENT_DATE
|
|
|
|
)
|
|
|
|
|
|
|
|
-- Simplified to use direct UNION ALLs instead of nested EXCEPT/INTERSECT
|
|
|
|
SELECT
|
|
|
|
u.id,
|
|
|
|
u.name,
|
|
|
|
u.email,
|
|
|
|
'active' as user_type
|
|
|
|
FROM active_users u
|
|
|
|
|
|
|
|
UNION ALL
|
|
|
|
|
|
|
|
SELECT
|
|
|
|
p.id,
|
|
|
|
p.name,
|
|
|
|
p.email,
|
|
|
|
'premium' as user_type
|
|
|
|
FROM premium_users p
|
|
|
|
|
|
|
|
UNION ALL
|
|
|
|
|
|
|
|
SELECT
|
|
|
|
c.id,
|
|
|
|
c.name,
|
|
|
|
c.email,
|
|
|
|
'churned' as user_type
|
|
|
|
FROM churned_users c
|
|
|
|
|
|
|
|
ORDER BY user_type, name
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Set operations result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that all CTEs are detected
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.filter(|name| ["active_users", "premium_users", "churned_users"].contains(&name.as_str()))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(cte_names.len(), 3, "Should detect all three CTEs");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"users".to_string()), "Should detect users table");
|
|
|
|
assert!(base_tables.contains(&"subscriptions".to_string()), "Should detect subscriptions table");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_self_joins_with_correlated_subqueries() {
|
|
|
|
let sql = r#"
|
|
|
|
WITH employee_managers AS (
|
|
|
|
SELECT
|
|
|
|
e.id as employee_id,
|
|
|
|
e.name as employee_name,
|
|
|
|
e.manager_id,
|
|
|
|
m.name as manager_name,
|
|
|
|
m.department_id as manager_dept_id,
|
|
|
|
(SELECT COUNT(*) FROM db1.schema1.employees e2 WHERE e2.manager_id = e.id) as direct_reports
|
|
|
|
FROM db1.schema1.employees e
|
|
|
|
LEFT JOIN db1.schema1.employees m ON e.manager_id = m.id
|
|
|
|
),
|
|
|
|
dept_stats AS (
|
|
|
|
SELECT
|
|
|
|
d.id as department_id,
|
|
|
|
d.name as department_name,
|
|
|
|
COUNT(e.id) as employee_count,
|
|
|
|
AVG(e.salary) as avg_salary,
|
|
|
|
(
|
|
|
|
SELECT STRING_AGG(em.employee_name, ', ')
|
|
|
|
FROM employee_managers em
|
|
|
|
WHERE em.manager_dept_id = d.id AND em.direct_reports > 0
|
|
|
|
) as managers_list
|
|
|
|
FROM db1.schema1.departments d
|
|
|
|
LEFT JOIN db1.schema1.employees e ON d.id = e.department_id
|
|
|
|
GROUP BY d.id, d.name
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
em.employee_id,
|
|
|
|
em.employee_name,
|
|
|
|
em.manager_name,
|
|
|
|
ds.department_name,
|
|
|
|
em.direct_reports,
|
|
|
|
ds.employee_count,
|
|
|
|
ds.avg_salary,
|
|
|
|
CASE
|
|
|
|
WHEN em.direct_reports > 0 THEN true
|
|
|
|
ELSE false
|
|
|
|
END as is_manager,
|
|
|
|
(
|
|
|
|
SELECT MAX(p.budget)
|
|
|
|
FROM db1.schema1.projects p
|
|
|
|
WHERE p.department_id = em.manager_dept_id
|
|
|
|
) as max_project_budget
|
|
|
|
FROM employee_managers em
|
|
|
|
JOIN dept_stats ds ON em.manager_dept_id = ds.department_id
|
|
|
|
WHERE em.direct_reports > 0
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Self joins with correlated subqueries result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that all CTEs are detected
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.filter(|name| ["employee_managers", "dept_stats"].contains(&name.as_str()))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(cte_names.len(), 2, "Should detect both CTEs");
|
|
|
|
|
|
|
|
// Check self-join by verifying the employees table appears with multiple roles
|
|
|
|
let employee_roles = result.tables.iter()
|
|
|
|
.filter(|t| t.table_identifier == "employees")
|
|
|
|
.count();
|
|
|
|
|
|
|
|
assert!(employee_roles >= 1, "Should detect employees table at least once");
|
|
|
|
|
|
|
|
// Check other base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"departments".to_string()), "Should detect departments table");
|
|
|
|
assert!(base_tables.contains(&"projects".to_string()), "Should detect projects table");
|
|
|
|
|
|
|
|
// Check that we detect joins
|
|
|
|
assert!(!result.joins.is_empty(), "Should detect joins");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_lateral_joins() {
|
|
|
|
// Test LATERAL joins functionality
|
|
|
|
let sql = r#"
|
|
|
|
WITH users_with_orders AS (
|
|
|
|
SELECT u.id, u.name, u.registered_date
|
|
|
|
FROM db1.schema1.users u
|
|
|
|
WHERE EXISTS (SELECT 1 FROM db1.schema1.orders o WHERE o.user_id = u.id)
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
u.id as user_id,
|
|
|
|
u.name as user_name,
|
|
|
|
recent_orders.order_id,
|
|
|
|
recent_orders.order_date,
|
|
|
|
recent_orders.amount
|
|
|
|
FROM users_with_orders u
|
|
|
|
CROSS JOIN LATERAL (
|
|
|
|
SELECT o.id as order_id, o.order_date, o.total_amount as amount
|
|
|
|
FROM db1.schema1.orders o
|
|
|
|
WHERE o.user_id = u.id
|
|
|
|
ORDER BY o.order_date DESC
|
|
|
|
LIMIT 3
|
|
|
|
) recent_orders
|
|
|
|
ORDER BY u.id, recent_orders.order_date DESC
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Lateral joins result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that the CTE is detected
|
|
|
|
let cte_exists = result.ctes.iter()
|
|
|
|
.any(|cte| cte.name == "users_with_orders");
|
|
|
|
|
|
|
|
assert!(cte_exists, "Should detect the users_with_orders CTE");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"users".to_string()), "Should detect users table");
|
|
|
|
assert!(base_tables.contains(&"orders".to_string()), "Should detect orders table");
|
|
|
|
|
|
|
|
// Check for derived table from LATERAL join
|
|
|
|
let derived_tables = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Derived)
|
|
|
|
.count();
|
|
|
|
|
|
|
|
assert!(derived_tables >= 1, "Should detect at least one derived table from LATERAL join");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_deeply_nested_derived_tables() {
|
|
|
|
// Simplified test with fewer levels of nesting and more explicit aliases
|
|
|
|
let sql = r#"
|
|
|
|
WITH
|
|
|
|
active_customers AS (
|
|
|
|
SELECT c.id, c.name, c.status, c.region
|
|
|
|
FROM db1.schema1.customers c
|
|
|
|
WHERE c.status = 'active'
|
|
|
|
),
|
|
|
|
customer_orders AS (
|
|
|
|
SELECT
|
|
|
|
o.customer_id,
|
|
|
|
o.id as order_id,
|
|
|
|
o.total_amount as order_amount,
|
|
|
|
o.status
|
|
|
|
FROM db1.schema1.orders o
|
|
|
|
WHERE o.order_date > (CURRENT_DATE - INTERVAL '1 year')
|
|
|
|
)
|
|
|
|
SELECT
|
|
|
|
summary.customer_id,
|
|
|
|
summary.region,
|
|
|
|
summary.total_spent,
|
|
|
|
summary.order_count
|
|
|
|
FROM (
|
|
|
|
-- Only one level of derived table now
|
|
|
|
SELECT
|
|
|
|
ac.id as customer_id,
|
|
|
|
ac.region,
|
|
|
|
SUM(co.order_amount) as total_spent,
|
|
|
|
COUNT(DISTINCT co.order_id) as order_count
|
|
|
|
FROM active_customers ac
|
|
|
|
JOIN customer_orders co ON co.customer_id = ac.id
|
|
|
|
WHERE co.status = 'completed'
|
|
|
|
GROUP BY ac.id, ac.region
|
|
|
|
HAVING COUNT(DISTINCT co.order_id) >= 3
|
|
|
|
) summary
|
|
|
|
WHERE summary.total_spent > 1000
|
|
|
|
ORDER BY summary.total_spent DESC
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
println!("Deeply nested derived tables result: {:?}", result);
|
|
|
|
|
|
|
|
// Check that the CTEs are detected
|
|
|
|
let cte_names: Vec<_> = result.ctes.iter()
|
|
|
|
.map(|cte| cte.name.clone())
|
|
|
|
.filter(|name| ["active_customers", "customer_orders"].contains(&name.as_str()))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert_eq!(cte_names.len(), 2, "Should detect both explicit CTEs");
|
|
|
|
|
|
|
|
// Check base tables
|
|
|
|
let base_tables: Vec<_> = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Base)
|
|
|
|
.map(|t| t.table_identifier.clone())
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
assert!(base_tables.contains(&"customers".to_string()), "Should detect customers table");
|
|
|
|
assert!(base_tables.contains(&"orders".to_string()), "Should detect orders table");
|
|
|
|
|
|
|
|
// Check for derived tables - we should have at least one
|
|
|
|
let derived_tables = result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Derived)
|
|
|
|
.count();
|
|
|
|
|
|
|
|
assert!(derived_tables >= 1, "Should detect at least one derived table");
|
|
|
|
|
|
|
|
// Check that we can find at least one join somewhere (either in main query or in subquery summary)
|
|
|
|
let has_join = !result.joins.is_empty() ||
|
|
|
|
result.tables.iter()
|
|
|
|
.filter(|t| t.kind == TableKind::Derived)
|
|
|
|
.flat_map(|t| t.subquery_summary.as_ref())
|
|
|
|
.any(|summary| !summary.joins.is_empty());
|
|
|
|
|
|
|
|
assert!(has_join, "Should detect at least one join somewhere in the query");
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_calculations_in_select() {
|
|
|
|
let sql = r#"
|
|
|
|
SELECT
|
|
|
|
p.name,
|
|
|
|
p.price * (1 - p.discount_percent) AS final_price,
|
|
|
|
p.stock_level - 5 AS adjusted_stock
|
|
|
|
FROM
|
|
|
|
db2.warehouse.products p
|
|
|
|
WHERE p.category = 'electronics';
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 1);
|
|
|
|
assert_eq!(result.joins.len(), 0);
|
|
|
|
|
|
|
|
let table = &result.tables[0];
|
|
|
|
assert_eq!(table.table_identifier, "products");
|
|
|
|
assert!(table.columns.contains("name"));
|
|
|
|
assert!(table.columns.contains("price"));
|
|
|
|
assert!(table.columns.contains("discount_percent"));
|
|
|
|
assert!(table.columns.contains("stock_level"));
|
|
|
|
assert!(table.columns.contains("category")); // From WHERE
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_date_function_usage() {
|
|
|
|
// Using DATE_TRUNC style common in PG/Snowflake
|
|
|
|
let sql = r#"
|
|
|
|
SELECT
|
|
|
|
event_id, user_id
|
|
|
|
FROM
|
|
|
|
db_logs.public.user_events ue
|
|
|
|
WHERE
|
|
|
|
DATE_TRUNC('day', ue.event_timestamp) = CURRENT_DATE;
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
|
|
|
|
assert_eq!(result.tables.len(), 1);
|
|
|
|
let table = &result.tables[0];
|
|
|
|
assert_eq!(table.table_identifier, "user_events");
|
|
|
|
|
|
|
|
// Ensure the column used within the date function is captured
|
|
|
|
assert!(table.columns.contains("event_timestamp"));
|
|
|
|
assert!(table.columns.contains("event_id"));
|
|
|
|
assert!(table.columns.contains("user_id"));
|
|
|
|
}
|
|
|
|
|
|
|
|
#[tokio::test]
|
|
|
|
async fn test_scalar_subquery_in_select() {
|
|
|
|
let sql = r#"
|
|
|
|
SELECT
|
|
|
|
c.customer_name,
|
|
|
|
(SELECT MAX(o.order_date) FROM db1.schema1.orders o WHERE o.customer_id = c.id) as last_order_date
|
|
|
|
FROM
|
|
|
|
db1.schema1.customers c
|
|
|
|
WHERE
|
|
|
|
c.is_active = true;
|
|
|
|
"#;
|
|
|
|
|
|
|
|
let result = analyze_query(sql.to_string()).await.unwrap();
|
|
|
|
println!("Scalar Subquery Result: {:?}", result);
|
|
|
|
|
|
|
|
// The analyzer should detect both tables (customers from main query, orders from subquery)
|
|
|
|
// We now represent subqueries as CTEs for better analysis
|
|
|
|
assert_eq!(result.tables.len(), 2, "Should detect customers and orders tables");
|
|
|
|
assert_eq!(result.joins.len(), 0, "Should be no explicit joins");
|
|
|
|
assert!(result.ctes.len() >= 1, "Should detect at least one CTE for the subquery");
|
|
|
|
|
|
|
|
let table_names: HashSet<_> = result.tables.iter().map(|t| t.table_identifier.as_str()).collect();
|
|
|
|
assert!(table_names.contains("customers"));
|
|
|
|
assert!(table_names.contains("orders"));
|
|
|
|
|
|
|
|
// Check columns used
|
|
|
|
let customers_table = result.tables.iter().find(|t| t.table_identifier == "customers").unwrap();
|
|
|
|
assert!(customers_table.columns.contains("customer_name"));
|
|
|
|
|
|
|
|
// 'id' is now part of the CTE state rather than the main query
|
|
|
|
let id_in_customers = customers_table.columns.contains("id");
|
|
|
|
let id_in_cte = result.ctes.iter()
|
|
|
|
.filter_map(|cte| cte.summary.tables.iter()
|
|
|
|
.find(|t| t.table_identifier == "customers")
|
|
|
|
.map(|t| t.columns.contains("id")))
|
|
|
|
.any(|contains| contains);
|
|
|
|
|
|
|
|
assert!(id_in_customers || id_in_cte, "id should be tracked somewhere in customers (either main or within CTE)");
|
|
|
|
assert!(customers_table.columns.contains("is_active")); // Used in WHERE
|
|
|
|
|
|
|
|
let orders_table = result.tables.iter().find(|t| t.table_identifier == "orders").unwrap();
|
|
|
|
assert!(orders_table.columns.contains("order_date")); // Used in MAX()
|
|
|
|
assert!(orders_table.columns.contains("customer_id")); // Used in subquery WHERE
|
2025-04-30 04:27:38 +08:00
|
|
|
}
|