buster/packages/ai/evals/golden-dataset/golden.eval.ts

71 lines
2.2 KiB
TypeScript

import { RuntimeContext } from '@mastra/core/runtime-context';
import { Eval, initDataset } from 'braintrust';
import analystWorkflow, {
type AnalystRuntimeContext,
} from '../../src/workflows/analyst-agent-workflow/analyst-workflow';
import {
MetricCreatedSuccessfully,
NoFailureToCreateMetrics,
acceptableAnswersScorer,
allFilesUseYmlBlockScalar,
dashboardCreatedForMultipleMetrics,
doneMessageMatchesSqlResults,
exactlyOneDoneTool,
executeSqlFollowedByValidTool,
preferredAnswerScorer,
timeFrameIsString,
todoMarkdownBoxes,
usesExpectedPrecomputedMetric,
} from './scorers';
const basicSuite = [
executeSqlFollowedByValidTool,
MetricCreatedSuccessfully,
exactlyOneDoneTool,
NoFailureToCreateMetrics,
dashboardCreatedForMultipleMetrics,
];
const formatSuite = [todoMarkdownBoxes, allFilesUseYmlBlockScalar, timeFrameIsString];
const basicLLMSuite = [doneMessageMatchesSqlResults];
const expectedSuite = [
usesExpectedPrecomputedMetric,
acceptableAnswersScorer,
preferredAnswerScorer,
];
const getMetricCreation = async (input: string) => {
const runtimeContext = new RuntimeContext<AnalystRuntimeContext>();
runtimeContext.set('userId', 'c2dd64cd-f7f3-4884-bc91-d46ae431901e');
runtimeContext.set('organizationId', 'bf58d19a-8bb9-4f1d-a257-2d2105e7f1ce');
runtimeContext.set('dataSourceId', 'cc3ef3bc-44ec-4a43-8dc4-681cae5c996a');
runtimeContext.set('dataSourceSyntax', 'postgresql');
const run = analystWorkflow.createRun();
const response = await run.start({
inputData: { prompt: input },
runtimeContext,
});
if (response.status === 'failed') {
throw new Error(`Workflow failed: ${response.error}`);
}
const formatOutputStep = response.steps['format-output'];
if (formatOutputStep.status === 'failed') {
throw new Error(`Format output step failed: ${formatOutputStep.error}`);
}
return formatOutputStep.output.conversationHistory || [];
};
Eval('development', {
experimentName: 'Golden-Dataset-Run',
data: initDataset({
project: 'development',
dataset: 'Golden-Dataset',
}),
task: getMetricCreation,
scores: basicSuite.concat(basicLLMSuite).concat(expectedSuite).concat(formatSuite),
maxConcurrency: 5,
});