suna/backend/services/llm.py

395 lines
16 KiB
Python
Raw Normal View History

2025-03-30 14:48:57 +08:00
"""
LLM API interface for making calls to various language models.
This module provides a unified interface for making API calls to different LLM providers
(OpenAI, Anthropic, Groq, etc.) using LiteLLM. It includes support for:
- Streaming responses
- Tool calls and function calling
- Retry logic with exponential backoff
- Model-specific configurations
2025-04-01 09:26:52 +08:00
- Comprehensive error handling and logging
2025-03-30 14:48:57 +08:00
"""
2025-04-01 09:26:52 +08:00
from typing import Union, Dict, Any, Optional, AsyncGenerator, List
2025-03-30 14:48:57 +08:00
import os
import json
import asyncio
from openai import OpenAIError
import litellm
2025-04-02 02:49:35 +08:00
from utils.logger import logger
2025-04-18 12:49:41 +08:00
from datetime import datetime
import traceback
2025-03-30 14:48:57 +08:00
# litellm.set_verbose=True
2025-04-08 01:35:40 +08:00
litellm.modify_params=True
2025-04-01 09:26:52 +08:00
# Constants
MAX_RETRIES = 3
RATE_LIMIT_DELAY = 30
RETRY_DELAY = 5
2025-03-30 14:48:57 +08:00
class LLMError(Exception):
"""Base exception for LLM-related errors."""
pass
class LLMRetryError(LLMError):
"""Exception raised when retries are exhausted."""
pass
2025-04-01 09:26:52 +08:00
def setup_api_keys() -> None:
"""Set up API keys from environment variables."""
providers = ['OPENAI', 'ANTHROPIC', 'GROQ', 'OPENROUTER']
2025-04-01 09:26:52 +08:00
for provider in providers:
key = os.environ.get(f'{provider}_API_KEY')
if key:
logger.debug(f"API key set for provider: {provider}")
else:
logger.warning(f"No API key found for provider: {provider}")
# Set up OpenRouter API base if not already set
if os.environ.get('OPENROUTER_API_KEY') and not os.environ.get('OPENROUTER_API_BASE'):
os.environ['OPENROUTER_API_BASE'] = 'https://openrouter.ai/api/v1'
logger.debug("Set default OPENROUTER_API_BASE to https://openrouter.ai/api/v1")
# Set up AWS Bedrock credentials
aws_access_key = os.environ.get('AWS_ACCESS_KEY_ID')
aws_secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY')
aws_region = os.environ.get('AWS_REGION_NAME')
if aws_access_key and aws_secret_key and aws_region:
logger.debug(f"AWS credentials set for Bedrock in region: {aws_region}")
# Configure LiteLLM to use AWS credentials
os.environ['AWS_ACCESS_KEY_ID'] = aws_access_key
os.environ['AWS_SECRET_ACCESS_KEY'] = aws_secret_key
os.environ['AWS_REGION_NAME'] = aws_region
else:
logger.warning(f"Missing AWS credentials for Bedrock integration - access_key: {bool(aws_access_key)}, secret_key: {bool(aws_secret_key)}, region: {aws_region}")
2025-04-01 09:26:52 +08:00
async def handle_error(error: Exception, attempt: int, max_attempts: int) -> None:
"""Handle API errors with appropriate delays and logging."""
delay = RATE_LIMIT_DELAY if isinstance(error, litellm.exceptions.RateLimitError) else RETRY_DELAY
logger.warning(f"Error on attempt {attempt + 1}/{max_attempts}: {str(error)}")
logger.debug(f"Waiting {delay} seconds before retry...")
await asyncio.sleep(delay)
def prepare_params(
messages: List[Dict[str, Any]],
model_name: str,
temperature: float = 0,
max_tokens: Optional[int] = None,
response_format: Optional[Any] = None,
tools: Optional[List[Dict[str, Any]]] = None,
tool_choice: str = "auto",
api_key: Optional[str] = None,
api_base: Optional[str] = None,
stream: bool = False,
top_p: Optional[float] = None,
2025-04-18 12:49:41 +08:00
model_id: Optional[str] = None,
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low'
2025-04-01 09:26:52 +08:00
) -> Dict[str, Any]:
"""Prepare parameters for the API call."""
params = {
"model": model_name,
"messages": messages,
"temperature": temperature,
"response_format": response_format,
"top_p": top_p,
"stream": stream,
}
if api_key:
params["api_key"] = api_key
if api_base:
params["api_base"] = api_base
if model_id:
params["model_id"] = model_id
2025-04-01 09:26:52 +08:00
# Handle token limits
if max_tokens is not None:
# For Claude 3.7 in Bedrock, do not set max_tokens or max_tokens_to_sample
# as it causes errors with inference profiles
if model_name.startswith("bedrock/") and "claude-3-7" in model_name:
logger.debug(f"Skipping max_tokens for Claude 3.7 model: {model_name}")
# Do not add any max_tokens parameter for Claude 3.7
else:
param_name = "max_completion_tokens" if 'o1' in model_name else "max_tokens"
params[param_name] = max_tokens
2025-04-01 09:26:52 +08:00
# Add tools if provided
if tools:
params.update({
"tools": tools,
"tool_choice": tool_choice
})
logger.debug(f"Added {len(tools)} tools to API parameters")
# # Add Claude-specific headers
2025-04-16 02:07:31 +08:00
if "claude" in model_name.lower() or "anthropic" in model_name.lower():
params["extra_headers"] = {
# "anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15"
"anthropic-beta": "output-128k-2025-02-19"
}
logger.debug("Added Claude-specific headers")
# Add OpenRouter-specific parameters
if model_name.startswith("openrouter/"):
logger.debug(f"Preparing OpenRouter parameters for model: {model_name}")
# Add optional site URL and app name if set in environment
site_url = os.environ.get("OR_SITE_URL")
app_name = os.environ.get("OR_APP_NAME")
if site_url or app_name:
extra_headers = params.get("extra_headers", {})
if site_url:
extra_headers["HTTP-Referer"] = site_url
if app_name:
extra_headers["X-Title"] = app_name
params["extra_headers"] = extra_headers
logger.debug(f"Added OpenRouter site URL and app name to headers")
# Add Bedrock-specific parameters
if model_name.startswith("bedrock/"):
logger.debug(f"Preparing AWS Bedrock parameters for model: {model_name}")
if not model_id and "anthropic.claude-3-7-sonnet" in model_name:
params["model_id"] = "arn:aws:bedrock:us-west-2:935064898258:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0"
logger.debug(f"Auto-set model_id for Claude 3.7 Sonnet: {params['model_id']}")
2025-04-01 09:26:52 +08:00
2025-04-18 11:49:27 +08:00
# Apply Anthropic prompt caching (minimal implementation)
# Check model name *after* potential modifications (like adding bedrock/ prefix)
effective_model_name = params.get("model", model_name) # Use model from params if set, else original
if "claude" in effective_model_name.lower() or "anthropic" in effective_model_name.lower():
logger.debug("Applying minimal Anthropic prompt caching.")
messages = params["messages"] # Direct reference, modification affects params
# Ensure messages is a list
if not isinstance(messages, list):
logger.warning(f"Messages is not a list ({type(messages)}), skipping Anthropic cache control.")
return params # Return early if messages format is unexpected
# 1. Process the first message if it's a system prompt with string content
if messages and messages[0].get("role") == "system":
content = messages[0].get("content")
if isinstance(content, str):
# Wrap the string content in the required list structure
messages[0]["content"] = [
{"type": "text", "text": content, "cache_control": {"type": "ephemeral"}}
]
logger.debug("Applied cache_control to system message (converted from string).")
elif isinstance(content, list):
# If content is already a list, check if the first text block needs cache_control
for item in content:
if isinstance(item, dict) and item.get("type") == "text":
if "cache_control" not in item:
item["cache_control"] = {"type": "ephemeral"}
break # Apply to the first text block only for system prompt
else:
logger.warning("System message content is not a string or list, skipping cache_control.")
# 2. Find and process the last user message
last_user_idx = -1
for i in range(len(messages) - 1, -1, -1):
if messages[i].get("role") == "user":
last_user_idx = i
break
if last_user_idx != -1:
last_user_message = messages[last_user_idx]
content = last_user_message.get("content")
if isinstance(content, str):
# Wrap the string content in the required list structure
last_user_message["content"] = [
{"type": "text", "text": content, "cache_control": {"type": "ephemeral"}}
]
logger.debug(f"Applied cache_control to last user message (string content, index {last_user_idx}).")
elif isinstance(content, list):
# Modify text blocks within the list directly
for item in content:
if isinstance(item, dict) and item.get("type") == "text":
# Add cache_control if not already present
if "cache_control" not in item:
item["cache_control"] = {"type": "ephemeral"}
else:
logger.warning(f"Last user message (index {last_user_idx}) content is not a string or list ({type(content)}), skipping cache_control.")
2025-04-18 12:49:41 +08:00
# Add reasoning_effort for Anthropic models if enabled
use_thinking = enable_thinking if enable_thinking is not None else False
is_anthropic = "anthropic" in effective_model_name.lower() or "claude" in effective_model_name.lower()
if is_anthropic and use_thinking:
effort_level = reasoning_effort if reasoning_effort else 'low'
params["reasoning_effort"] = effort_level
params["temperature"] = 1.0 # Required by Anthropic when reasoning_effort is used
logger.info(f"Anthropic thinking enabled with reasoning_effort='{effort_level}'")
2025-04-01 09:26:52 +08:00
return params
2025-03-30 14:48:57 +08:00
async def make_llm_api_call(
2025-04-01 09:26:52 +08:00
messages: List[Dict[str, Any]],
2025-03-30 14:48:57 +08:00
model_name: str,
response_format: Optional[Any] = None,
temperature: float = 0,
max_tokens: Optional[int] = None,
2025-04-01 09:26:52 +08:00
tools: Optional[List[Dict[str, Any]]] = None,
2025-03-30 14:48:57 +08:00
tool_choice: str = "auto",
api_key: Optional[str] = None,
api_base: Optional[str] = None,
stream: bool = False,
top_p: Optional[float] = None,
2025-04-18 12:49:41 +08:00
model_id: Optional[str] = None,
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low'
2025-03-30 14:48:57 +08:00
) -> Union[Dict[str, Any], AsyncGenerator]:
"""
Make an API call to a language model using LiteLLM.
Args:
messages: List of message dictionaries for the conversation
model_name: Name of the model to use (e.g., "gpt-4", "claude-3", "openrouter/openai/gpt-4", "bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
2025-03-30 14:48:57 +08:00
response_format: Desired format for the response
temperature: Sampling temperature (0-1)
max_tokens: Maximum tokens in the response
tools: List of tool definitions for function calling
tool_choice: How to select tools ("auto" or "none")
api_key: Override default API key
api_base: Override default API base URL
stream: Whether to stream the response
top_p: Top-p sampling parameter
model_id: Optional ARN for Bedrock inference profiles
2025-04-18 12:49:41 +08:00
enable_thinking: Whether to enable thinking
reasoning_effort: Level of reasoning effort
2025-03-30 14:48:57 +08:00
Returns:
Union[Dict[str, Any], AsyncGenerator]: API response or stream
Raises:
LLMRetryError: If API call fails after retries
LLMError: For other API-related errors
"""
2025-04-18 12:49:41 +08:00
logger.debug(f"Making LLM API call to model: {model_name} (Thinking: {enable_thinking}, Effort: {reasoning_effort})")
2025-04-01 09:26:52 +08:00
params = prepare_params(
messages=messages,
2025-03-30 14:48:57 +08:00
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
response_format=response_format,
tools=tools,
tool_choice=tool_choice,
api_key=api_key,
api_base=api_base,
stream=stream,
top_p=top_p,
2025-04-18 12:49:41 +08:00
model_id=model_id,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort
2025-03-30 14:48:57 +08:00
)
2025-04-01 09:26:52 +08:00
last_error = None
for attempt in range(MAX_RETRIES):
try:
logger.debug(f"Attempt {attempt + 1}/{MAX_RETRIES}")
2025-04-07 00:45:02 +08:00
# logger.debug(f"API request parameters: {json.dumps(params, indent=2)}")
2025-04-01 09:26:52 +08:00
response = await litellm.acompletion(**params)
2025-04-11 00:02:21 +08:00
logger.debug(f"Successfully received API response from {model_name}")
2025-04-01 09:26:52 +08:00
logger.debug(f"Response: {response}")
return response
except (litellm.exceptions.RateLimitError, OpenAIError, json.JSONDecodeError) as e:
last_error = e
await handle_error(e, attempt, MAX_RETRIES)
except Exception as e:
logger.error(f"Unexpected error during API call: {str(e)}", exc_info=True)
raise LLMError(f"API call failed: {str(e)}")
error_msg = f"Failed to make API call after {MAX_RETRIES} attempts"
if last_error:
error_msg += f". Last error: {str(last_error)}"
logger.error(error_msg, exc_info=True)
raise LLMRetryError(error_msg)
# Initialize API keys on module import
setup_api_keys()
2025-03-30 14:48:57 +08:00
# Test code for OpenRouter integration
async def test_openrouter():
"""Test the OpenRouter integration with a simple query."""
test_messages = [
{"role": "user", "content": "Hello, can you give me a quick test response?"}
]
try:
# Test with standard OpenRouter model
print("\n--- Testing standard OpenRouter model ---")
response = await make_llm_api_call(
2025-04-18 06:17:48 +08:00
model_name="openrouter/openai/gpt-4o-mini",
messages=test_messages,
temperature=0.7,
max_tokens=100
)
print(f"Response: {response.choices[0].message.content}")
# Test with deepseek model
print("\n--- Testing deepseek model ---")
response = await make_llm_api_call(
model_name="openrouter/deepseek/deepseek-r1-distill-llama-70b",
messages=test_messages,
temperature=0.7,
max_tokens=100
)
print(f"Response: {response.choices[0].message.content}")
print(f"Model used: {response.model}")
# Test with Mistral model
print("\n--- Testing Mistral model ---")
response = await make_llm_api_call(
model_name="openrouter/mistralai/mixtral-8x7b-instruct",
messages=test_messages,
temperature=0.7,
max_tokens=100
)
print(f"Response: {response.choices[0].message.content}")
print(f"Model used: {response.model}")
return True
except Exception as e:
print(f"Error testing OpenRouter: {str(e)}")
return False
async def test_bedrock():
"""Test the AWS Bedrock integration with a simple query."""
test_messages = [
{"role": "user", "content": "Hello, can you give me a quick test response?"}
]
try:
response = await make_llm_api_call(
model_name="bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0",
model_id="arn:aws:bedrock:us-west-2:935064898258:inference-profile/us.anthropic.claude-3-7-sonnet-20250219-v1:0",
messages=test_messages,
temperature=0.7,
# Claude 3.7 has issues with max_tokens, so omit it
# max_tokens=100
)
print(f"Response: {response.choices[0].message.content}")
print(f"Model used: {response.model}")
return True
except Exception as e:
print(f"Error testing Bedrock: {str(e)}")
return False
if __name__ == "__main__":
import asyncio
test_success = asyncio.run(test_bedrock())
if test_success:
print("\n✅ integration test completed successfully!")
else:
print("\n❌ Bedrock integration test failed!")