suna/agentpress/thread_manager.py

663 lines
28 KiB
Python
Raw Normal View History

2024-10-06 01:04:15 +08:00
import json
import logging
import asyncio
2024-10-23 10:16:35 +08:00
import os
from typing import List, Dict, Any, Optional, Callable, Type, Union, AsyncGenerator
2024-10-10 22:21:39 +08:00
from agentpress.llm import make_llm_api_call
2024-10-23 09:28:12 +08:00
from agentpress.tool import Tool, ToolResult
2024-10-10 22:21:39 +08:00
from agentpress.tool_registry import ToolRegistry
from agentpress.tool_parser import ToolParser, StandardToolParser
from agentpress.tool_executor import ToolExecutor, StandardToolExecutor, SequentialToolExecutor
2024-10-08 03:13:11 +08:00
import uuid
2024-10-10 22:21:39 +08:00
2024-10-06 01:04:15 +08:00
class ThreadManager:
"""
Manages conversation threads with LLM models and tool execution.
The ThreadManager handles:
- Creating and managing conversation threads
- Adding/retrieving messages in threads
- Executing LLM calls with optional tool usage
- Managing tool registration and execution
- Supporting both streaming and non-streaming responses
Attributes:
threads_dir (str): Directory where thread files are stored
tool_registry (ToolRegistry): Registry for managing available tools
tool_parser (ToolParser): Parser for handling tool calls/responses
tool_executor (ToolExecutor): Executor for running tool functions
"""
def __init__(
self,
threads_dir: str = "threads",
tool_parser: Optional[ToolParser] = None,
tool_executor: Optional[ToolExecutor] = None
):
"""Initialize ThreadManager with optional custom tool parser and executor.
Args:
threads_dir (str): Directory to store thread files
tool_parser (Optional[ToolParser]): Custom tool parser implementation
tool_executor (Optional[ToolExecutor]): Custom tool executor implementation
"""
2024-10-23 10:16:35 +08:00
self.threads_dir = threads_dir
2024-10-06 01:04:15 +08:00
self.tool_registry = ToolRegistry()
self.tool_parser = tool_parser or StandardToolParser()
self.tool_executor = tool_executor or StandardToolExecutor()
2024-10-23 10:16:35 +08:00
os.makedirs(self.threads_dir, exist_ok=True)
2024-10-23 09:28:12 +08:00
def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
2024-10-23 09:28:12 +08:00
"""
Add a tool to the ThreadManager.
If function_names is provided, only register those specific functions.
If function_names is None, register all functions from the tool.
Args:
tool_class: The tool class to register
function_names: Optional list of function names to register
**kwargs: Additional keyword arguments passed to tool initialization
2024-10-23 09:28:12 +08:00
"""
self.tool_registry.register_tool(tool_class, function_names, **kwargs)
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
async def create_thread(self) -> str:
"""
Create a new conversation thread.
Returns:
str: Unique thread ID for the created thread
"""
2024-10-23 10:16:35 +08:00
thread_id = str(uuid.uuid4())
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": []}, f)
return thread_id
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
async def add_message(self, thread_id: str, message_data: Dict[str, Any], images: Optional[List[Dict[str, Any]]] = None):
"""
Add a message to an existing thread.
Args:
thread_id (str): ID of the thread to add message to
message_data (Dict[str, Any]): Message data including role and content
images (Optional[List[Dict[str, Any]]]): List of image data to include
Each image dict should contain 'content_type' and 'base64' keys
Raises:
Exception: If message addition fails
"""
2024-10-06 01:04:15 +08:00
logging.info(f"Adding message to thread {thread_id} with images: {images}")
2024-10-23 10:16:35 +08:00
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
if message_data['role'] == 'user':
last_assistant_index = next((i for i in reversed(range(len(messages))) if messages[i]['role'] == 'assistant' and 'tool_calls' in messages[i]), None)
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
if last_assistant_index is not None:
tool_call_count = len(messages[last_assistant_index]['tool_calls'])
tool_response_count = sum(1 for msg in messages[last_assistant_index+1:] if msg['role'] == 'tool')
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
if tool_call_count != tool_response_count:
await self.cleanup_incomplete_tool_calls(thread_id)
for key, value in message_data.items():
if isinstance(value, ToolResult):
message_data[key] = str(value)
if images:
if isinstance(message_data['content'], str):
message_data['content'] = [{"type": "text", "text": message_data['content']}]
elif not isinstance(message_data['content'], list):
message_data['content'] = []
for image in images:
image_content = {
"type": "image_url",
"image_url": {
"url": f"data:{image['content_type']};base64,{image['base64']}",
"detail": "high"
2024-10-06 01:04:15 +08:00
}
2024-10-23 10:16:35 +08:00
}
message_data['content'].append(image_content)
messages.append(message_data)
thread_data["messages"] = messages
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
logging.info(f"Message added to thread {thread_id}: {message_data}")
except Exception as e:
logging.error(f"Failed to add message to thread {thread_id}: {e}")
raise e
async def list_messages(self, thread_id: str, hide_tool_msgs: bool = False, only_latest_assistant: bool = False, regular_list: bool = True) -> List[Dict[str, Any]]:
"""
Retrieve messages from a thread with optional filtering.
Args:
thread_id (str): ID of the thread to retrieve messages from
hide_tool_msgs (bool): If True, excludes tool messages and tool calls
only_latest_assistant (bool): If True, returns only the most recent assistant message
regular_list (bool): If True, only includes standard message types
Returns:
List[Dict[str, Any]]: List of messages matching the filter criteria
"""
2024-10-23 10:16:35 +08:00
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
2024-10-06 01:04:15 +08:00
if only_latest_assistant:
for msg in reversed(messages):
if msg.get('role') == 'assistant':
return [msg]
return []
2024-10-23 09:28:12 +08:00
filtered_messages = messages
2024-10-06 01:04:15 +08:00
if hide_tool_msgs:
filtered_messages = [
{k: v for k, v in msg.items() if k != 'tool_calls'}
for msg in filtered_messages
if msg.get('role') != 'tool'
]
if regular_list:
filtered_messages = [
msg for msg in filtered_messages
if msg.get('role') in ['system', 'assistant', 'tool', 'user']
]
return filtered_messages
2024-10-23 10:16:35 +08:00
except FileNotFoundError:
return []
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
async def cleanup_incomplete_tool_calls(self, thread_id: str):
2024-10-06 01:04:15 +08:00
messages = await self.list_messages(thread_id)
last_assistant_message = next((m for m in reversed(messages) if m['role'] == 'assistant' and 'tool_calls' in m), None)
if last_assistant_message:
tool_calls = last_assistant_message.get('tool_calls', [])
tool_responses = [m for m in messages[messages.index(last_assistant_message)+1:] if m['role'] == 'tool']
if len(tool_calls) != len(tool_responses):
failed_tool_results = []
for tool_call in tool_calls[len(tool_responses):]:
failed_tool_result = {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": tool_call['function']['name'],
"content": "ToolResult(success=False, output='Execution interrupted. Session was stopped.')"
}
failed_tool_results.append(failed_tool_result)
assistant_index = messages.index(last_assistant_message)
messages[assistant_index+1:assistant_index+1] = failed_tool_results
2024-10-23 10:16:35 +08:00
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": messages}, f)
2024-10-06 01:04:15 +08:00
return True
return False
async def run_thread(
self,
thread_id: str,
system_message: Dict[str, Any],
model_name: str,
temperature: float = 0,
max_tokens: Optional[int] = None,
tool_choice: str = "auto",
temporary_message: Optional[Dict[str, Any]] = None,
use_tools: bool = False,
execute_tools_async: bool = True,
execute_tool_calls: bool = True,
stream: bool = False,
execute_tools_on_stream: bool = False
) -> Union[Dict[str, Any], AsyncGenerator]:
"""
Run a conversation thread with the specified parameters.
Args:
thread_id (str): ID of the thread to run
system_message (Dict[str, Any]): System message to guide model behavior
model_name (str): Name of the LLM model to use
temperature (float): Sampling temperature for model responses
max_tokens (Optional[int]): Maximum tokens in model response
tool_choice (str): How tools should be selected ('auto' or 'none')
temporary_message (Optional[Dict[str, Any]]): Extra temporary message to include at the end of the LLM api request. Without adding it permanently to the Thread.
use_tools (bool): Whether to enable tool usage
execute_tools_async (bool): Whether to execute tools concurrently or synchronously if off.
execute_tool_calls (bool): Whether to execute parsed tool calls
stream (bool): Whether to stream the response
execute_tools_on_stream (bool): Whether to execute tools during streaming, or waiting for full response before executing.
Returns:
Union[Dict[str, Any], AsyncGenerator]:
- Dict with response data for non-streaming
- AsyncGenerator yielding chunks for streaming
Raises:
Exception: If API call or tool execution fails
"""
2024-10-23 09:28:12 +08:00
messages = await self.list_messages(thread_id)
prepared_messages = [system_message] + messages
if temporary_message:
prepared_messages.append(temporary_message)
2024-10-23 09:28:12 +08:00
tools = self.tool_registry.get_all_tool_schemas() if use_tools else None
2024-10-06 01:04:15 +08:00
try:
2024-10-23 09:28:12 +08:00
llm_response = await make_llm_api_call(
prepared_messages,
model_name,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
tool_choice=tool_choice if use_tools else None,
stream=stream
2024-10-17 04:08:46 +08:00
)
if stream:
return self._handle_streaming_response(
thread_id=thread_id,
response_stream=llm_response,
use_tools=use_tools,
execute_tool_calls=execute_tool_calls,
execute_tools_async=execute_tools_async,
execute_tools_on_stream=execute_tools_on_stream
)
# For non-streaming, handle the response
if use_tools and execute_tool_calls:
await self.handle_response_with_tools(thread_id, llm_response, execute_tools_async)
else:
await self.handle_response_without_tools(thread_id, llm_response)
return {
"llm_response": llm_response,
"run_thread_params": {
"thread_id": thread_id,
"system_message": system_message,
"model_name": model_name,
"temperature": temperature,
"max_tokens": max_tokens,
"tool_choice": tool_choice,
"temporary_message": temporary_message,
"execute_tools_async": execute_tools_async,
"execute_tool_calls": execute_tool_calls,
"use_tools": use_tools,
"stream": stream,
"execute_tools_on_stream": execute_tools_on_stream
}
}
2024-10-23 09:28:12 +08:00
except Exception as e:
logging.error(f"Error in API call: {str(e)}")
2024-10-08 03:13:11 +08:00
return {
2024-10-23 09:28:12 +08:00
"status": "error",
"message": str(e),
"run_thread_params": {
"thread_id": thread_id,
"system_message": system_message,
"model_name": model_name,
"temperature": temperature,
"max_tokens": max_tokens,
"tool_choice": tool_choice,
"temporary_message": temporary_message,
2024-10-23 09:28:12 +08:00
"execute_tools_async": execute_tools_async,
"execute_tool_calls": execute_tool_calls,
"use_tools": use_tools,
"stream": stream,
"execute_tools_on_stream": execute_tools_on_stream
2024-10-23 09:28:12 +08:00
}
2024-10-08 03:13:11 +08:00
}
2024-10-06 01:04:15 +08:00
async def _handle_streaming_response(
self,
thread_id: str,
response_stream: AsyncGenerator,
use_tools: bool,
execute_tool_calls: bool,
execute_tools_async: bool,
execute_tools_on_stream: bool
) -> AsyncGenerator:
"""Handle streaming response and tool execution."""
tool_calls_buffer = {} # Buffer to store tool calls by index
executed_tool_calls = set() # Track which tool calls have been executed
available_functions = self.get_available_functions() if use_tools else {}
content_buffer = "" # Buffer for content
current_assistant_message = None # Track current assistant message
pending_tool_calls = [] # Store tool calls for non-streaming execution
async def execute_tool_calls(tool_calls):
if execute_tools_async:
return await self.tool_executor.execute_tool_calls(
tool_calls=tool_calls,
available_functions=available_functions,
thread_id=thread_id,
executed_tool_calls=executed_tool_calls
)
else:
sequential_executor = SequentialToolExecutor()
return await sequential_executor.execute_tool_calls(
tool_calls=tool_calls,
available_functions=available_functions,
thread_id=thread_id,
executed_tool_calls=executed_tool_calls
)
async def process_chunk(chunk):
nonlocal content_buffer, current_assistant_message, pending_tool_calls
# Parse the chunk using tool parser
parsed_message, is_complete = await self.tool_parser.parse_stream(chunk, tool_calls_buffer)
# If we have a message with tool calls
if parsed_message and 'tool_calls' in parsed_message and parsed_message['tool_calls']:
# Update or create assistant message
if not current_assistant_message:
current_assistant_message = parsed_message
await self.add_message(thread_id, current_assistant_message)
else:
current_assistant_message['tool_calls'] = parsed_message['tool_calls']
await self._update_message(thread_id, current_assistant_message)
# Get new tool calls that haven't been executed
new_tool_calls = [
tool_call for tool_call in parsed_message['tool_calls']
if tool_call['id'] not in executed_tool_calls
]
if new_tool_calls:
if execute_tools_on_stream:
# Execute tools immediately during streaming
tool_results = await execute_tool_calls(new_tool_calls)
for result in tool_results:
await self.add_message(thread_id, result)
executed_tool_calls.add(result['tool_call_id'])
else:
# Store tool calls for later execution
pending_tool_calls.extend(new_tool_calls)
# Handle end of response
if chunk.choices[0].finish_reason:
if not execute_tools_on_stream and pending_tool_calls:
# Execute all pending tool calls at the end
tool_results = await execute_tool_calls(pending_tool_calls)
for result in tool_results:
await self.add_message(thread_id, result)
executed_tool_calls.add(result['tool_call_id'])
pending_tool_calls.clear()
return chunk
2024-10-06 01:04:15 +08:00
async for chunk in response_stream:
processed_chunk = await process_chunk(chunk)
yield processed_chunk
2024-10-06 01:04:15 +08:00
async def _update_message(self, thread_id: str, message: Dict[str, Any]):
"""Update an existing message in the thread."""
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
# Find and update the last assistant message
for i in reversed(range(len(thread_data["messages"]))):
if thread_data["messages"][i]["role"] == "assistant":
thread_data["messages"][i] = message
break
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
except Exception as e:
logging.error(f"Error updating message in thread {thread_id}: {e}")
raise e
2024-10-23 10:16:35 +08:00
async def handle_response_without_tools(self, thread_id: str, response: Any):
2024-10-23 09:28:12 +08:00
response_content = response.choices[0].message['content']
await self.add_message(thread_id, {"role": "assistant", "content": response_content})
2024-10-06 01:04:15 +08:00
2024-10-23 10:16:35 +08:00
async def handle_response_with_tools(self, thread_id: str, response: Any, execute_tools_async: bool):
2024-10-06 01:04:15 +08:00
try:
# Parse the response using the tool parser
assistant_message = await self.tool_parser.parse_response(response)
2024-10-23 09:28:12 +08:00
await self.add_message(thread_id, assistant_message)
# Execute tools if present
if 'tool_calls' in assistant_message and assistant_message['tool_calls']:
available_functions = self.get_available_functions()
2024-10-06 01:04:15 +08:00
if execute_tools_async:
tool_results = await self.execute_tools_async(assistant_message['tool_calls'], available_functions, thread_id)
2024-10-06 01:04:15 +08:00
else:
tool_results = await self.execute_tools_sync(assistant_message['tool_calls'], available_functions, thread_id)
2024-10-06 01:04:15 +08:00
for result in tool_results:
await self.add_message(thread_id, result)
logging.info(f"Tool execution result: {result}")
2024-10-06 01:04:15 +08:00
except Exception as e:
logging.error(f"Error in handle_response_with_tools: {e}")
logging.error(f"Response: {response}")
response_content = response.choices[0].message.get('content', '')
2024-10-23 09:28:12 +08:00
await self.add_message(thread_id, {"role": "assistant", "content": response_content or ""})
2024-10-06 01:04:15 +08:00
def get_available_functions(self) -> Dict[str, Callable]:
available_functions = {}
for tool_name, tool_info in self.tool_registry.get_all_tools().items():
tool_instance = tool_info['instance']
for func_name, func in tool_instance.__class__.__dict__.items():
if callable(func) and not func_name.startswith("__"):
available_functions[func_name] = getattr(tool_instance, func_name)
return available_functions
async def execute_tools_async(self, tool_calls: List[Dict[str, Any]], available_functions: Dict[str, Callable], thread_id: str) -> List[Dict[str, Any]]:
"""
Execute multiple tool calls concurrently.
Args:
tool_calls (List[Dict[str, Any]]): List of tool calls to execute
available_functions (Dict[str, Callable]): Map of function names to implementations
thread_id (str): ID of the thread requesting tool execution
Returns:
List[Dict[str, Any]]: Results from tool executions
"""
async def execute_single_tool(tool_call: Dict[str, Any]) -> Dict[str, Any]:
try:
function_name = tool_call['function']['name']
function_args = tool_call['function']['arguments']
if isinstance(function_args, str):
function_args = json.loads(function_args)
function_to_call = available_functions.get(function_name)
if not function_to_call:
error_msg = f"Function {function_name} not found"
logging.error(error_msg)
return {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": function_name,
"content": str(ToolResult(success=False, output=error_msg))
}
result = await function_to_call(**function_args)
logging.info(f"Tool execution result for {function_name}: {result}")
return {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": function_name,
"content": str(result)
}
except Exception as e:
error_msg = f"Error executing {function_name}: {str(e)}"
logging.error(error_msg)
return {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": function_name,
"content": str(ToolResult(success=False, output=error_msg))
}
2024-10-06 01:04:15 +08:00
tasks = [execute_single_tool(tool_call) for tool_call in tool_calls]
results = await asyncio.gather(*tasks)
return results
2024-10-06 01:04:15 +08:00
async def execute_tools_sync(self, tool_calls: List[Dict[str, Any]], available_functions: Dict[str, Callable], thread_id: str) -> List[Dict[str, Any]]:
"""
Execute multiple tool calls sequentially.
Args:
tool_calls (List[Dict[str, Any]]): List of tool calls to execute
available_functions (Dict[str, Callable]): Map of function names to implementations
thread_id (str): ID of the thread requesting tool execution
Returns:
List[Dict[str, Any]]: Results from tool executions
"""
results = []
2024-10-06 01:04:15 +08:00
for tool_call in tool_calls:
try:
function_name = tool_call['function']['name']
function_args = tool_call['function']['arguments']
if isinstance(function_args, str):
function_args = json.loads(function_args)
function_to_call = available_functions.get(function_name)
if not function_to_call:
error_msg = f"Function {function_name} not found"
logging.error(error_msg)
result = ToolResult(success=False, output=error_msg)
else:
result = await function_to_call(**function_args)
logging.info(f"Tool execution result for {function_name}: {result}")
results.append({
"role": "tool",
"tool_call_id": tool_call['id'],
"name": function_name,
"content": str(result)
})
except Exception as e:
error_msg = f"Error executing {function_name}: {str(e)}"
logging.error(error_msg)
results.append({
"role": "tool",
"tool_call_id": tool_call['id'],
"name": function_name,
"content": str(ToolResult(success=False, output=error_msg))
})
2024-10-06 01:04:15 +08:00
return results
2024-10-06 01:04:15 +08:00
async def execute_tool(self, function_to_call, function_args, function_name, tool_call_id):
try:
function_response = await function_to_call(**function_args)
except Exception as e:
error_message = f"Error in {function_name}: {str(e)}"
function_response = ToolResult(success=False, output=error_message)
return {
"role": "tool",
"tool_call_id": tool_call_id,
"name": function_name,
"content": str(function_response),
}
2024-10-23 10:16:35 +08:00
async def get_thread(self, thread_id: str) -> Optional[Dict[str, Any]]:
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
return json.load(f)
except FileNotFoundError:
return None
2024-10-06 01:04:15 +08:00
2024-10-23 09:28:12 +08:00
if __name__ == "__main__":
import asyncio
from agentpress.examples.example_agent.tools.files_tool import FilesTool
2024-10-06 01:04:15 +08:00
2024-10-23 09:28:12 +08:00
async def main():
manager = ThreadManager()
manager.add_tool(FilesTool, ['create_file'])
2024-10-23 09:28:12 +08:00
thread_id = await manager.create_thread()
# Add a test message
await manager.add_message(thread_id, {
"role": "user",
"content": "Please create 10x files Each should be a chapter of a book about an Introduction to Robotics.."
})
system_message = {
"role": "system",
"content": "You are a helpful assistant that can create, read, update, and delete files."
}
model_name = "anthropic/claude-3-5-haiku-latest"
# model_name = "gpt-4o-mini"
# Test with tools (non-streaming)
print("\n🤖 Testing non-streaming response with tools:")
response = await manager.run_thread(
2024-10-10 22:21:39 +08:00
thread_id=thread_id,
2024-10-23 09:28:12 +08:00
system_message=system_message,
model_name=model_name,
temperature=0.7,
stream=False,
use_tools=True,
execute_tool_calls=True
2024-10-10 22:21:39 +08:00
)
# Print the non-streaming response
if "error" in response:
print(f"Error: {response['message']}")
else:
print(response["llm_response"].choices[0].message.content)
print("\n✨ Response completed.\n")
2024-10-10 22:21:39 +08:00
# Test streaming
print("\n🤖 Testing streaming response:")
stream_response = await manager.run_thread(
2024-10-23 09:28:12 +08:00
thread_id=thread_id,
system_message=system_message,
model_name=model_name,
temperature=0.7,
stream=True,
use_tools=True,
execute_tool_calls=True,
execute_tools_on_stream=True
2024-10-23 09:28:12 +08:00
)
2024-10-10 22:21:39 +08:00
buffer = ""
async for chunk in stream_response:
if isinstance(chunk, dict) and 'choices' in chunk:
content = chunk['choices'][0]['delta'].get('content', '')
else:
# For non-dict responses (like ModelResponse objects)
content = chunk.choices[0].delta.content
if content:
buffer += content
# Print complete words/sentences when we hit whitespace
if content[-1].isspace():
print(buffer, end='', flush=True)
buffer = ""
# Print any remaining content
if buffer:
print(buffer, flush=True)
print("\n✨ Stream completed.\n")
2024-10-06 01:04:15 +08:00
2024-10-23 09:28:12 +08:00
asyncio.run(main())