mirror of https://github.com/kortix-ai/suna.git
152 lines
5.7 KiB
Python
152 lines
5.7 KiB
Python
|
import asyncio
|
||
|
import json
|
||
|
import logging
|
||
|
from typing import Dict, Any, List, Set, Callable, Optional
|
||
|
from agentpress.base_processors import ToolExecutorBase
|
||
|
from agentpress.tool import ToolResult
|
||
|
|
||
|
# --- Standard Tool Executor Implementation ---
|
||
|
|
||
|
class StandardToolExecutor(ToolExecutorBase):
|
||
|
"""Standard implementation of tool execution with configurable strategies.
|
||
|
|
||
|
Provides a flexible tool execution implementation that supports both parallel
|
||
|
and sequential execution patterns, with built-in error handling and result
|
||
|
formatting.
|
||
|
|
||
|
Attributes:
|
||
|
parallel (bool): Whether to execute tools in parallel
|
||
|
|
||
|
Methods:
|
||
|
execute_tool_calls: Main execution entry point
|
||
|
_execute_parallel: Parallel execution implementation
|
||
|
_execute_sequential: Sequential execution implementation
|
||
|
"""
|
||
|
|
||
|
def __init__(self, parallel: bool = True):
|
||
|
self.parallel = parallel
|
||
|
|
||
|
async def execute_tool_calls(
|
||
|
self,
|
||
|
tool_calls: List[Dict[str, Any]],
|
||
|
available_functions: Dict[str, Callable],
|
||
|
thread_id: str,
|
||
|
executed_tool_calls: Optional[Set[str]] = None
|
||
|
) -> List[Dict[str, Any]]:
|
||
|
if executed_tool_calls is None:
|
||
|
executed_tool_calls = set()
|
||
|
|
||
|
if self.parallel:
|
||
|
return await self._execute_parallel(
|
||
|
tool_calls,
|
||
|
available_functions,
|
||
|
thread_id,
|
||
|
executed_tool_calls
|
||
|
)
|
||
|
else:
|
||
|
return await self._execute_sequential(
|
||
|
tool_calls,
|
||
|
available_functions,
|
||
|
thread_id,
|
||
|
executed_tool_calls
|
||
|
)
|
||
|
|
||
|
async def _execute_parallel(
|
||
|
self,
|
||
|
tool_calls: List[Dict[str, Any]],
|
||
|
available_functions: Dict[str, Callable],
|
||
|
thread_id: str,
|
||
|
executed_tool_calls: Set[str]
|
||
|
) -> List[Dict[str, Any]]:
|
||
|
async def execute_single_tool(tool_call: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
if tool_call['id'] in executed_tool_calls:
|
||
|
return None
|
||
|
|
||
|
try:
|
||
|
function_name = tool_call['function']['name']
|
||
|
function_args = tool_call['function']['arguments']
|
||
|
if isinstance(function_args, str):
|
||
|
function_args = json.loads(function_args)
|
||
|
|
||
|
function_to_call = available_functions.get(function_name)
|
||
|
if not function_to_call:
|
||
|
error_msg = f"Function {function_name} not found"
|
||
|
logging.error(error_msg)
|
||
|
return {
|
||
|
"role": "tool",
|
||
|
"tool_call_id": tool_call['id'],
|
||
|
"name": function_name,
|
||
|
"content": str(ToolResult(success=False, output=error_msg))
|
||
|
}
|
||
|
|
||
|
result = await function_to_call(**function_args)
|
||
|
logging.info(f"Tool execution result for {function_name}: {result}")
|
||
|
executed_tool_calls.add(tool_call['id'])
|
||
|
|
||
|
return {
|
||
|
"role": "tool",
|
||
|
"tool_call_id": tool_call['id'],
|
||
|
"name": function_name,
|
||
|
"content": str(result)
|
||
|
}
|
||
|
except Exception as e:
|
||
|
error_msg = f"Error executing {function_name}: {str(e)}"
|
||
|
logging.error(error_msg)
|
||
|
return {
|
||
|
"role": "tool",
|
||
|
"tool_call_id": tool_call['id'],
|
||
|
"name": function_name,
|
||
|
"content": str(ToolResult(success=False, output=error_msg))
|
||
|
}
|
||
|
|
||
|
tasks = [execute_single_tool(tool_call) for tool_call in tool_calls]
|
||
|
results = await asyncio.gather(*tasks)
|
||
|
return [r for r in results if r is not None]
|
||
|
|
||
|
async def _execute_sequential(
|
||
|
self,
|
||
|
tool_calls: List[Dict[str, Any]],
|
||
|
available_functions: Dict[str, Callable],
|
||
|
thread_id: str,
|
||
|
executed_tool_calls: Set[str]
|
||
|
) -> List[Dict[str, Any]]:
|
||
|
results = []
|
||
|
for tool_call in tool_calls:
|
||
|
if tool_call['id'] in executed_tool_calls:
|
||
|
continue
|
||
|
|
||
|
try:
|
||
|
function_name = tool_call['function']['name']
|
||
|
function_args = tool_call['function']['arguments']
|
||
|
if isinstance(function_args, str):
|
||
|
function_args = json.loads(function_args)
|
||
|
|
||
|
function_to_call = available_functions.get(function_name)
|
||
|
if not function_to_call:
|
||
|
error_msg = f"Function {function_name} not found"
|
||
|
logging.error(error_msg)
|
||
|
result = ToolResult(success=False, output=error_msg)
|
||
|
else:
|
||
|
result = await function_to_call(**function_args)
|
||
|
logging.info(f"Tool execution result for {function_name}: {result}")
|
||
|
executed_tool_calls.add(tool_call['id'])
|
||
|
|
||
|
results.append({
|
||
|
"role": "tool",
|
||
|
"tool_call_id": tool_call['id'],
|
||
|
"name": function_name,
|
||
|
"content": str(result)
|
||
|
})
|
||
|
except Exception as e:
|
||
|
error_msg = f"Error executing {function_name}: {str(e)}"
|
||
|
logging.error(error_msg)
|
||
|
results.append({
|
||
|
"role": "tool",
|
||
|
"tool_call_id": tool_call['id'],
|
||
|
"name": function_name,
|
||
|
"content": str(ToolResult(success=False, output=error_msg))
|
||
|
})
|
||
|
|
||
|
return results
|
||
|
|