This commit is contained in:
marko-kraemer 2025-07-06 06:40:44 +02:00
parent d850800a5f
commit 4bbc03f674
5 changed files with 10 additions and 291 deletions

View File

@ -32,7 +32,6 @@ instance_id = None # Global instance ID for this backend instance
# TTL for Redis response lists (24 hours)
REDIS_RESPONSE_LIST_TTL = 3600 * 24
class AgentStartRequest(BaseModel):
model_name: Optional[str] = None # Will be set from config.MODEL_TO_USE in the endpoint
enable_thinking: Optional[bool] = False
@ -1798,6 +1797,7 @@ async def delete_agent(agent_id: str, user_id: str = Depends(get_current_user_id
logger.error(f"Error deleting agent {agent_id}: {str(e)}")
raise HTTPException(status_code=500, detail="Internal server error")
# Marketplace Models
class MarketplaceAgent(BaseModel):
agent_id: str

View File

@ -603,285 +603,4 @@ async def run_agent(
break
generation.end(output=full_response)
langfuse.flush() # Flush Langfuse events at the end of the run
# # TESTING
# async def test_agent():
# """Test function to run the agent with a sample query"""
# from agentpress.thread_manager import ThreadManager
# from services.supabase import DBConnection
# # Initialize ThreadManager
# thread_manager = ThreadManager()
# # Create a test thread directly with Postgres function
# client = await DBConnection().client
# try:
# # Get user's personal account
# account_result = await client.rpc('get_personal_account').execute()
# # if not account_result.data:
# # print("Error: No personal account found")
# # return
# account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"
# if not account_id:
# print("Error: Could not get account ID")
# return
# # Find or create a test project in the user's account
# project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()
# if project_result.data and len(project_result.data) > 0:
# # Use existing test project
# project_id = project_result.data[0]['project_id']
# print(f"\n🔄 Using existing test project: {project_id}")
# else:
# # Create new test project if none exists
# project_result = await client.table('projects').insert({
# "name": "test11",
# "account_id": account_id
# }).execute()
# project_id = project_result.data[0]['project_id']
# print(f"\n✨ Created new test project: {project_id}")
# # Create a thread for this project
# thread_result = await client.table('threads').insert({
# 'project_id': project_id,
# 'account_id': account_id
# }).execute()
# thread_data = thread_result.data[0] if thread_result.data else None
# if not thread_data:
# print("Error: No thread data returned")
# return
# thread_id = thread_data['thread_id']
# except Exception as e:
# print(f"Error setting up thread: {str(e)}")
# return
# print(f"\n🤖 Agent Thread Created: {thread_id}\n")
# # Interactive message input loop
# while True:
# # Get user input
# user_message = input("\n💬 Enter your message (or 'exit' to quit): ")
# if user_message.lower() == 'exit':
# break
# if not user_message.strip():
# print("\n🔄 Running agent...\n")
# await process_agent_response(thread_id, project_id, thread_manager)
# continue
# # Add the user message to the thread
# await thread_manager.add_message(
# thread_id=thread_id,
# type="user",
# content={
# "role": "user",
# "content": user_message
# },
# is_llm_message=True
# )
# print("\n🔄 Running agent...\n")
# await process_agent_response(thread_id, project_id, thread_manager)
# print("\n👋 Test completed. Goodbye!")
# async def process_agent_response(
# thread_id: str,
# project_id: str,
# thread_manager: ThreadManager,
# stream: bool = True,
# model_name: str = "anthropic/claude-3-7-sonnet-latest",
# enable_thinking: Optional[bool] = False,
# reasoning_effort: Optional[str] = 'low',
# enable_context_manager: bool = True
# ):
# """Process the streaming response from the agent."""
# chunk_counter = 0
# current_response = ""
# tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status
# # Create a test sandbox for processing with a unique test prefix to avoid conflicts with production sandboxes
# # sandbox_pass = str(uuid4())
# # sandbox = await create_sandbox(sandbox_pass)
# # Store the original ID so we can refer to it
# # original_sandbox_id = sandbox.id
# # Generate a clear test identifier
# # test_prefix = f"test_{uuid4().hex[:8]}_"
# logger.info(f"Created test sandbox with ID {original_sandbox_id} and test prefix {test_prefix}")
# # Log the sandbox URL for debugging
# # print(f"\033[91mTest sandbox created: {str(await sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")
# async for chunk in run_agent(
# thread_id=thread_id,
# project_id=project_id,
# sandbox=sandbox,
# stream=stream,
# thread_manager=thread_manager,
# native_max_auto_continues=25,
# model_name=model_name,
# enable_thinking=enable_thinking,
# reasoning_effort=reasoning_effort,
# enable_context_manager=enable_context_manager
# ):
# chunk_counter += 1
# # print(f"CHUNK: {chunk}") # Uncomment for debugging
# if chunk.get('type') == 'assistant':
# # Try parsing the content JSON
# try:
# # Handle content as string or object
# content = chunk.get('content', '{}')
# if isinstance(content, str):
# content_json = json.loads(content)
# else:
# content_json = content
# actual_content = content_json.get('content', '')
# # Print the actual assistant text content as it comes
# if actual_content:
# # Check if it contains XML tool tags, if so, print the whole tag for context
# if '<' in actual_content and '>' in actual_content:
# # Avoid printing potentially huge raw content if it's not just text
# if len(actual_content) < 500: # Heuristic limit
# print(actual_content, end='', flush=True)
# else:
# # Maybe just print a summary if it's too long or contains complex XML
# if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True)
# elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True)
# else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case
# else:
# # Regular text content
# print(actual_content, end='', flush=True)
# current_response += actual_content # Accumulate only text part
# except json.JSONDecodeError:
# # If content is not JSON (e.g., just a string chunk), print directly
# raw_content = chunk.get('content', '')
# print(raw_content, end='', flush=True)
# current_response += raw_content
# except Exception as e:
# print(f"\nError processing assistant chunk: {e}\n")
# elif chunk.get('type') == 'tool': # Updated from 'tool_result'
# # Add timestamp and format tool result nicely
# tool_name = "UnknownTool" # Try to get from metadata if available
# result_content = "No content"
# # Parse metadata - handle both string and dict formats
# metadata = chunk.get('metadata', {})
# if isinstance(metadata, str):
# try:
# metadata = json.loads(metadata)
# except json.JSONDecodeError:
# metadata = {}
# linked_assistant_msg_id = metadata.get('assistant_message_id')
# parsing_details = metadata.get('parsing_details')
# if parsing_details:
# tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details
# try:
# # Content is a JSON string or object
# content = chunk.get('content', '{}')
# if isinstance(content, str):
# content_json = json.loads(content)
# else:
# content_json = content
# # The actual tool result is nested inside content.content
# tool_result_str = content_json.get('content', '')
# # Extract the actual tool result string (remove outer <tool_result> tag if present)
# match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL)
# if match:
# result_content = match.group(1).strip()
# # Try to parse the result string itself as JSON for pretty printing
# try:
# result_obj = json.loads(result_content)
# result_content = json.dumps(result_obj, indent=2)
# except json.JSONDecodeError:
# # Keep as string if not JSON
# pass
# else:
# # Fallback if tag extraction fails
# result_content = tool_result_str
# except json.JSONDecodeError:
# result_content = chunk.get('content', 'Error parsing tool content')
# except Exception as e:
# result_content = f"Error processing tool chunk: {e}"
# print(f"\n\n🛠 TOOL RESULT [{tool_name}] → {result_content}")
# elif chunk.get('type') == 'status':
# # Log tool status changes
# try:
# # Handle content as string or object
# status_content = chunk.get('content', '{}')
# if isinstance(status_content, str):
# status_content = json.loads(status_content)
# status_type = status_content.get('status_type')
# function_name = status_content.get('function_name', '')
# xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
# tool_name = xml_tag_name or function_name # Prefer XML tag name
# if status_type == 'tool_started' and tool_name:
# tool_usage_counter += 1
# print(f"\n⏳ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
# print(" " + "-" * 40)
# # Return to the current content display
# if current_response:
# print("\nContinuing response:", flush=True)
# print(current_response, end='', flush=True)
# elif status_type == 'tool_completed' and tool_name:
# status_emoji = "✅"
# print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
# elif status_type == 'finish':
# finish_reason = status_content.get('finish_reason', '')
# if finish_reason:
# print(f"\n📌 Finished: {finish_reason}")
# # else: # Print other status types if needed for debugging
# # print(f"\n STATUS: {chunk.get('content')}")
# except json.JSONDecodeError:
# print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
# except Exception as e:
# print(f"\nError processing status chunk: {e}")
# # Removed elif chunk.get('type') == 'tool_call': block
# # Update final message
# print(f"\n\n✅ Agent run completed with {tool_usage_counter} tool executions")
# # Try to clean up the test sandbox if possible
# try:
# # Attempt to delete/archive the sandbox to clean up resources
# # Note: Actual deletion may depend on the Daytona SDK's capabilities
# logger.info(f"Attempting to clean up test sandbox {original_sandbox_id}")
# # If there's a method to archive/delete the sandbox, call it here
# # Example: daytona.archive_sandbox(sandbox.id)
# except Exception as e:
# logger.warning(f"Failed to clean up test sandbox {original_sandbox_id}: {str(e)}")
# if __name__ == "__main__":
# import asyncio
# # Configure any environment variables or setup needed for testing
# load_dotenv() # Ensure environment variables are loaded
# # Run the test function
# asyncio.run(test_agent())
langfuse.flush()

View File

@ -9,15 +9,10 @@ import json
from typing import List, Dict, Any, Optional, Union
from litellm.utils import token_counter
from litellm.cost_calculator import completion_cost
from services.supabase import DBConnection
from services.llm import make_llm_api_call
from utils.logger import logger
# Constants for token management
DEFAULT_TOKEN_THRESHOLD = 120000 # 80k tokens threshold for summarization
SUMMARY_TARGET_TOKENS = 10000 # Target ~10k tokens for the summary message
RESERVE_TOKENS = 5000 # Reserve tokens for new messages
DEFAULT_TOKEN_THRESHOLD = 120000
class ContextManager:
"""Manages thread context including token counting and summarization."""

View File

@ -126,12 +126,17 @@ async def log_requests_middleware(request: Request, call_next):
raise
# Define allowed origins based on environment
allowed_origins = ["https://www.suna.so", "https://suna.so", "http://localhost:3000"]
allowed_origins = ["https://www.suna.so", "https://suna.so"]
allow_origin_regex = None
# Add staging-specific origins
if config.ENV_MODE == EnvMode.LOCAL:
allowed_origins.append("http://localhost:3000")
# Add staging-specific origins
if config.ENV_MODE == EnvMode.STAGING:
allowed_origins.append("https://staging.suna.so")
allowed_origins.append("http://localhost:3000")
allow_origin_regex = r"https://suna-.*-prjcts\.vercel\.app"
app.add_middleware(

View File

@ -14,7 +14,7 @@ from services.supabase import DBConnection
from utils.auth_utils import get_current_user_id_from_jwt
from pydantic import BaseModel
from utils.constants import MODEL_ACCESS_TIERS, MODEL_NAME_ALIASES
from litellm import cost_per_token, model_cost
from litellm import cost_per_token
import time
# Initialize Stripe