mirror of https://github.com/kortix-ai/suna.git
fix: fix initializations of workflow
This commit is contained in:
parent
8a9644fcef
commit
bf120a119b
|
@ -30,6 +30,9 @@ dramatiq.set_broker(rabbitmq_broker)
|
||||||
|
|
||||||
_initialized = False
|
_initialized = False
|
||||||
db = DBConnection()
|
db = DBConnection()
|
||||||
|
db = DBConnection()
|
||||||
|
workflow_executor = WorkflowExecutor(db)
|
||||||
|
deterministic_executor = DeterministicWorkflowExecutor(db)
|
||||||
instance_id = "single"
|
instance_id = "single"
|
||||||
|
|
||||||
async def initialize():
|
async def initialize():
|
||||||
|
|
|
@ -0,0 +1,303 @@
|
||||||
|
import sentry_sdk
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import traceback
|
||||||
|
from datetime import datetime, timezone
|
||||||
|
from typing import Optional, Dict, Any
|
||||||
|
from services import redis
|
||||||
|
from workflows.executor import WorkflowExecutor
|
||||||
|
from workflows.deterministic_executor import DeterministicWorkflowExecutor
|
||||||
|
from workflows.models import WorkflowDefinition
|
||||||
|
from utils.logger import logger
|
||||||
|
import dramatiq
|
||||||
|
import uuid
|
||||||
|
from services.supabase import DBConnection
|
||||||
|
from dramatiq.brokers.rabbitmq import RabbitmqBroker
|
||||||
|
import os
|
||||||
|
from utils.retry import retry
|
||||||
|
|
||||||
|
rabbitmq_host = os.getenv('RABBITMQ_HOST', 'rabbitmq')
|
||||||
|
rabbitmq_port = int(os.getenv('RABBITMQ_PORT', 5672))
|
||||||
|
rabbitmq_broker = RabbitmqBroker(host=rabbitmq_host, port=rabbitmq_port, middleware=[dramatiq.middleware.AsyncIO()])
|
||||||
|
dramatiq.set_broker(rabbitmq_broker)
|
||||||
|
|
||||||
|
|
||||||
|
_initialized = False
|
||||||
|
db = DBConnection()
|
||||||
|
workflow_executor = WorkflowExecutor(db)
|
||||||
|
deterministic_executor = DeterministicWorkflowExecutor(db)
|
||||||
|
instance_id = "workflow_worker"
|
||||||
|
|
||||||
|
async def initialize():
|
||||||
|
"""Initialize the workflow worker with resources."""
|
||||||
|
global db, workflow_executor, instance_id, _initialized
|
||||||
|
|
||||||
|
if not instance_id:
|
||||||
|
instance_id = str(uuid.uuid4())[:8]
|
||||||
|
|
||||||
|
await retry(lambda: redis.initialize_async())
|
||||||
|
await db.initialize()
|
||||||
|
|
||||||
|
_initialized = True
|
||||||
|
logger.info(f"Initialized workflow worker with instance ID: {instance_id}")
|
||||||
|
|
||||||
|
@dramatiq.actor
|
||||||
|
async def run_workflow_background(
|
||||||
|
execution_id: str,
|
||||||
|
workflow_id: str,
|
||||||
|
workflow_name: str,
|
||||||
|
workflow_definition: Dict[str, Any],
|
||||||
|
variables: Optional[Dict[str, Any]] = None,
|
||||||
|
triggered_by: str = "MANUAL",
|
||||||
|
project_id: Optional[str] = None,
|
||||||
|
thread_id: Optional[str] = None,
|
||||||
|
agent_run_id: Optional[str] = None,
|
||||||
|
deterministic: bool = True
|
||||||
|
):
|
||||||
|
"""Run a workflow in the background using Dramatiq."""
|
||||||
|
try:
|
||||||
|
await initialize()
|
||||||
|
except Exception as e:
|
||||||
|
logger.critical(f"Failed to initialize workflow worker: {e}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
run_lock_key = f"workflow_run_lock:{execution_id}"
|
||||||
|
|
||||||
|
lock_acquired = await redis.set(run_lock_key, instance_id, nx=True, ex=redis.REDIS_KEY_TTL)
|
||||||
|
|
||||||
|
if not lock_acquired:
|
||||||
|
existing_instance = await redis.get(run_lock_key)
|
||||||
|
if existing_instance:
|
||||||
|
logger.info(f"Workflow execution {execution_id} is already being processed by instance {existing_instance.decode() if isinstance(existing_instance, bytes) else existing_instance}. Skipping duplicate execution.")
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
lock_acquired = await redis.set(run_lock_key, instance_id, nx=True, ex=redis.REDIS_KEY_TTL)
|
||||||
|
if not lock_acquired:
|
||||||
|
logger.info(f"Workflow execution {execution_id} is already being processed by another instance. Skipping duplicate execution.")
|
||||||
|
return
|
||||||
|
|
||||||
|
sentry_sdk.set_tag("workflow_id", workflow_id)
|
||||||
|
sentry_sdk.set_tag("execution_id", execution_id)
|
||||||
|
|
||||||
|
logger.info(f"Starting background workflow execution: {execution_id} for workflow: {workflow_name} (Instance: {instance_id})")
|
||||||
|
logger.info(f"🔄 Triggered by: {triggered_by}")
|
||||||
|
|
||||||
|
client = await db.client
|
||||||
|
start_time = datetime.now(timezone.utc)
|
||||||
|
total_responses = 0
|
||||||
|
pubsub = None
|
||||||
|
stop_checker = None
|
||||||
|
stop_signal_received = False
|
||||||
|
|
||||||
|
# Define Redis keys and channels - use agent_run pattern if agent_run_id provided for frontend compatibility
|
||||||
|
if agent_run_id:
|
||||||
|
response_list_key = f"agent_run:{agent_run_id}:responses"
|
||||||
|
response_channel = f"agent_run:{agent_run_id}:new_response"
|
||||||
|
instance_control_channel = f"agent_run:{agent_run_id}:control:{instance_id}"
|
||||||
|
global_control_channel = f"agent_run:{agent_run_id}:control"
|
||||||
|
instance_active_key = f"active_run:{instance_id}:{agent_run_id}"
|
||||||
|
else:
|
||||||
|
# Fallback to workflow execution pattern
|
||||||
|
response_list_key = f"workflow_execution:{execution_id}:responses"
|
||||||
|
response_channel = f"workflow_execution:{execution_id}:new_response"
|
||||||
|
instance_control_channel = f"workflow_execution:{execution_id}:control:{instance_id}"
|
||||||
|
global_control_channel = f"workflow_execution:{execution_id}:control"
|
||||||
|
instance_active_key = f"active_workflow:{instance_id}:{execution_id}"
|
||||||
|
|
||||||
|
async def check_for_stop_signal():
|
||||||
|
nonlocal stop_signal_received
|
||||||
|
if not pubsub: return
|
||||||
|
try:
|
||||||
|
while not stop_signal_received:
|
||||||
|
message = await pubsub.get_message(ignore_subscribe_messages=True, timeout=0.5)
|
||||||
|
if message and message.get("type") == "message":
|
||||||
|
data = message.get("data")
|
||||||
|
if isinstance(data, bytes): data = data.decode('utf-8')
|
||||||
|
if data == "STOP":
|
||||||
|
logger.info(f"Received STOP signal for workflow execution {execution_id} (Instance: {instance_id})")
|
||||||
|
stop_signal_received = True
|
||||||
|
break
|
||||||
|
if total_responses % 50 == 0:
|
||||||
|
try: await redis.expire(instance_active_key, redis.REDIS_KEY_TTL)
|
||||||
|
except Exception as ttl_err: logger.warning(f"Failed to refresh TTL for {instance_active_key}: {ttl_err}")
|
||||||
|
await asyncio.sleep(0.1)
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
logger.info(f"Stop signal checker cancelled for {execution_id} (Instance: {instance_id})")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in stop signal checker for {execution_id}: {e}", exc_info=True)
|
||||||
|
stop_signal_received = True
|
||||||
|
|
||||||
|
try:
|
||||||
|
pubsub = await redis.create_pubsub()
|
||||||
|
try:
|
||||||
|
await retry(lambda: pubsub.subscribe(instance_control_channel, global_control_channel))
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Redis failed to subscribe to control channels: {e}", exc_info=True)
|
||||||
|
raise e
|
||||||
|
|
||||||
|
logger.debug(f"Subscribed to control channels: {instance_control_channel}, {global_control_channel}")
|
||||||
|
stop_checker = asyncio.create_task(check_for_stop_signal())
|
||||||
|
await redis.set(instance_active_key, "running", ex=redis.REDIS_KEY_TTL)
|
||||||
|
|
||||||
|
await client.table('workflow_executions').update({
|
||||||
|
"status": "running",
|
||||||
|
"started_at": start_time.isoformat()
|
||||||
|
}).eq('id', execution_id).execute()
|
||||||
|
|
||||||
|
workflow = WorkflowDefinition(**workflow_definition)
|
||||||
|
|
||||||
|
if not thread_id:
|
||||||
|
thread_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
final_status = "running"
|
||||||
|
error_message = None
|
||||||
|
pending_redis_operations = []
|
||||||
|
|
||||||
|
if deterministic:
|
||||||
|
executor = deterministic_executor
|
||||||
|
logger.info(f"Using deterministic executor for workflow {execution_id}")
|
||||||
|
else:
|
||||||
|
executor = workflow_executor
|
||||||
|
logger.info(f"Using legacy executor for workflow {execution_id}")
|
||||||
|
|
||||||
|
async for response in executor.execute_workflow(
|
||||||
|
workflow=workflow,
|
||||||
|
variables=variables,
|
||||||
|
thread_id=thread_id,
|
||||||
|
project_id=project_id
|
||||||
|
):
|
||||||
|
if stop_signal_received:
|
||||||
|
logger.info(f"Workflow execution {execution_id} stopped by signal.")
|
||||||
|
final_status = "stopped"
|
||||||
|
break
|
||||||
|
|
||||||
|
response_json = json.dumps(response)
|
||||||
|
pending_redis_operations.append(asyncio.create_task(redis.rpush(response_list_key, response_json)))
|
||||||
|
pending_redis_operations.append(asyncio.create_task(redis.publish(response_channel, "new")))
|
||||||
|
total_responses += 1
|
||||||
|
|
||||||
|
if response.get('type') == 'workflow_status':
|
||||||
|
status_val = response.get('status')
|
||||||
|
if status_val in ['completed', 'failed', 'stopped']:
|
||||||
|
logger.info(f"Workflow execution {execution_id} finished via status message: {status_val}")
|
||||||
|
final_status = status_val
|
||||||
|
if status_val == 'failed' or status_val == 'stopped':
|
||||||
|
error_message = response.get('error', f"Workflow ended with status: {status_val}")
|
||||||
|
break
|
||||||
|
|
||||||
|
if final_status == "running":
|
||||||
|
final_status = "completed"
|
||||||
|
duration = (datetime.now(timezone.utc) - start_time).total_seconds()
|
||||||
|
logger.info(f"Workflow execution {execution_id} completed normally (duration: {duration:.2f}s, responses: {total_responses})")
|
||||||
|
completion_message = {"type": "workflow_status", "status": "completed", "message": "Workflow execution completed successfully"}
|
||||||
|
await redis.rpush(response_list_key, json.dumps(completion_message))
|
||||||
|
await redis.publish(response_channel, "new")
|
||||||
|
|
||||||
|
await update_workflow_execution_status(client, execution_id, final_status, error=error_message, agent_run_id=agent_run_id)
|
||||||
|
|
||||||
|
control_signal = "END_STREAM" if final_status == "completed" else "ERROR" if final_status == "failed" else "STOP"
|
||||||
|
try:
|
||||||
|
await redis.publish(global_control_channel, control_signal)
|
||||||
|
logger.debug(f"Published final control signal '{control_signal}' to {global_control_channel}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to publish final control signal {control_signal}: {str(e)}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
error_message = str(e)
|
||||||
|
traceback_str = traceback.format_exc()
|
||||||
|
duration = (datetime.now(timezone.utc) - start_time).total_seconds()
|
||||||
|
logger.error(f"Error in workflow execution {execution_id} after {duration:.2f}s: {error_message}\n{traceback_str} (Instance: {instance_id})")
|
||||||
|
final_status = "failed"
|
||||||
|
|
||||||
|
error_response = {"type": "workflow_status", "status": "error", "message": error_message}
|
||||||
|
try:
|
||||||
|
await redis.rpush(response_list_key, json.dumps(error_response))
|
||||||
|
await redis.publish(response_channel, "new")
|
||||||
|
except Exception as redis_err:
|
||||||
|
logger.error(f"Failed to push error response to Redis for {execution_id}: {redis_err}")
|
||||||
|
|
||||||
|
await update_workflow_execution_status(client, execution_id, "failed", error=f"{error_message}\n{traceback_str}", agent_run_id=agent_run_id)
|
||||||
|
try:
|
||||||
|
await redis.publish(global_control_channel, "ERROR")
|
||||||
|
logger.debug(f"Published ERROR signal to {global_control_channel}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to publish ERROR signal: {str(e)}")
|
||||||
|
|
||||||
|
finally:
|
||||||
|
if stop_checker and not stop_checker.done():
|
||||||
|
stop_checker.cancel()
|
||||||
|
try: await stop_checker
|
||||||
|
except asyncio.CancelledError: pass
|
||||||
|
except Exception as e: logger.warning(f"Error during stop_checker cancellation: {e}")
|
||||||
|
|
||||||
|
if pubsub:
|
||||||
|
try:
|
||||||
|
await pubsub.unsubscribe()
|
||||||
|
await pubsub.close()
|
||||||
|
logger.debug(f"Closed pubsub connection for {execution_id}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error closing pubsub for {execution_id}: {str(e)}")
|
||||||
|
|
||||||
|
await _cleanup_redis_response_list(execution_id, agent_run_id)
|
||||||
|
await _cleanup_redis_instance_key(execution_id, agent_run_id)
|
||||||
|
await _cleanup_redis_run_lock(execution_id)
|
||||||
|
|
||||||
|
try:
|
||||||
|
await asyncio.wait_for(asyncio.gather(*pending_redis_operations), timeout=30.0)
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
logger.warning(f"Timeout waiting for pending Redis operations for {execution_id}")
|
||||||
|
|
||||||
|
logger.info(f"Workflow execution background task fully completed for: {execution_id} (Instance: {instance_id}) with final status: {final_status}")
|
||||||
|
|
||||||
|
async def update_workflow_execution_status(client, execution_id: str, status: str, error: Optional[str] = None, agent_run_id: Optional[str] = None):
|
||||||
|
"""Update workflow execution status in database."""
|
||||||
|
try:
|
||||||
|
update_data = {
|
||||||
|
"status": status,
|
||||||
|
"completed_at": datetime.now(timezone.utc).isoformat() if status in ['completed', 'failed', 'stopped'] else None,
|
||||||
|
"error": error
|
||||||
|
}
|
||||||
|
|
||||||
|
await client.table('workflow_executions').update(update_data).eq('id', execution_id).execute()
|
||||||
|
logger.info(f"Updated workflow execution {execution_id} status to {status}")
|
||||||
|
|
||||||
|
# Also update agent_runs table if agent_run_id provided (for frontend streaming compatibility)
|
||||||
|
if agent_run_id:
|
||||||
|
await client.table('agent_runs').update(update_data).eq('id', agent_run_id).execute()
|
||||||
|
logger.info(f"Updated agent run {agent_run_id} status to {status}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to update workflow execution status: {e}")
|
||||||
|
|
||||||
|
async def _cleanup_redis_response_list(execution_id: str, agent_run_id: Optional[str] = None):
|
||||||
|
"""Set TTL on workflow execution response list."""
|
||||||
|
try:
|
||||||
|
if agent_run_id:
|
||||||
|
response_list_key = f"agent_run:{agent_run_id}:responses"
|
||||||
|
else:
|
||||||
|
response_list_key = f"workflow_execution:{execution_id}:responses"
|
||||||
|
await redis.expire(response_list_key, redis.REDIS_KEY_TTL)
|
||||||
|
logger.debug(f"Set TTL on {response_list_key}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to set TTL on response list for {execution_id}: {e}")
|
||||||
|
|
||||||
|
async def _cleanup_redis_instance_key(execution_id: str, agent_run_id: Optional[str] = None):
|
||||||
|
"""Remove instance-specific active run key."""
|
||||||
|
try:
|
||||||
|
if agent_run_id:
|
||||||
|
instance_active_key = f"active_run:{instance_id}:{agent_run_id}"
|
||||||
|
else:
|
||||||
|
instance_active_key = f"active_workflow:{instance_id}:{execution_id}"
|
||||||
|
await redis.delete(instance_active_key)
|
||||||
|
logger.debug(f"Cleaned up instance key {instance_active_key}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to clean up instance key for {execution_id}: {e}")
|
||||||
|
|
||||||
|
async def _cleanup_redis_run_lock(execution_id: str):
|
||||||
|
"""Remove workflow execution lock."""
|
||||||
|
try:
|
||||||
|
run_lock_key = f"workflow_run_lock:{execution_id}"
|
||||||
|
await redis.delete(run_lock_key)
|
||||||
|
logger.debug(f"Cleaned up run lock {run_lock_key}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to clean up run lock for {execution_id}: {e}")
|
Loading…
Reference in New Issue