""" Conversation thread management system for AgentPress. This module provides comprehensive conversation management, including: - Thread creation and persistence - Message handling with support for text and images - Tool registration and execution - LLM interaction with streaming support - Error handling and cleanup """ import json import logging import asyncio import uuid from typing import List, Dict, Any, Optional, Type, Union, AsyncGenerator from services.llm import make_llm_api_call from agentpress.tool import Tool, ToolResult from agentpress.tool_registry import ToolRegistry from agentpress.processor.llm_response_processor import LLMResponseProcessor from agentpress.processor.base_processors import ToolParserBase, ToolExecutorBase, ResultsAdderBase from services.supabase import DBConnection from backend.utils.logger import logger from agentpress.processor.xml.xml_tool_parser import XMLToolParser from agentpress.processor.xml.xml_tool_executor import XMLToolExecutor from agentpress.processor.xml.xml_results_adder import XMLResultsAdder from agentpress.processor.standard.standard_tool_parser import StandardToolParser from agentpress.processor.standard.standard_tool_executor import StandardToolExecutor from agentpress.processor.standard.standard_results_adder import StandardResultsAdder class ThreadManager: """Manages conversation threads with LLM models and tool execution. Provides comprehensive conversation management, handling message threading, tool registration, and LLM interactions with support for both standard and XML-based tool execution patterns. """ def __init__(self): """Initialize ThreadManager.""" self.db = DBConnection() self.tool_registry = ToolRegistry() def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs): """Add a tool to the ThreadManager.""" self.tool_registry.register_tool(tool_class, function_names, **kwargs) async def create_thread(self) -> str: """Create a new conversation thread.""" logger.info("Creating new conversation thread") thread_id = str(uuid.uuid4()) try: client = await self.db.client thread_data = { 'thread_id': thread_id, 'messages': json.dumps([]) } await client.table('threads').insert(thread_data).execute() logger.info(f"Successfully created thread with ID: {thread_id}") return thread_id except Exception as e: logger.error(f"Failed to create thread: {str(e)}", exc_info=True) raise async def add_message(self, thread_id: str, message_data: Dict[str, Any], images: Optional[List[Dict[str, Any]]] = None): """Add a message to an existing thread.""" logger.info(f"Adding message to thread {thread_id}") logger.debug(f"Message data: {message_data}") logger.debug(f"Images: {images}") try: # Handle cleanup of incomplete tool calls ''' if message_data['role'] == 'user': logger.debug("Checking for incomplete tool calls") messages = await self.get_messages(thread_id) last_assistant_index = next((i for i in reversed(range(len(messages))) if messages[i]['role'] == 'assistant' and 'tool_calls' in messages[i]), None) if last_assistant_index is not None: tool_call_count = len(messages[last_assistant_index]['tool_calls']) tool_response_count = sum(1 for msg in messages[last_assistant_index+1:] if msg['role'] == 'tool') if tool_call_count != tool_response_count: logger.info(f"Found incomplete tool calls in thread {thread_id}. Cleaning up...") await self.cleanup_incomplete_tool_calls(thread_id) ''' # Convert ToolResult instances to strings for key, value in message_data.items(): if isinstance(value, ToolResult): message_data[key] = str(value) # Handle image attachments if images: logger.debug(f"Processing {len(images)} image attachments") if isinstance(message_data['content'], str): message_data['content'] = [{"type": "text", "text": message_data['content']}] elif not isinstance(message_data['content'], list): message_data['content'] = [] for image in images: image_content = { "type": "image_url", "image_url": { "url": f"data:{image['content_type']};base64,{image['base64']}", "detail": "high" } } message_data['content'].append(image_content) # Get current messages client = await self.db.client thread = await client.table('threads').select('*').eq('thread_id', thread_id).single().execute() if not thread.data: logger.error(f"Thread {thread_id} not found") raise ValueError(f"Thread {thread_id} not found") messages = json.loads(thread.data['messages']) messages.append(message_data) # Update thread await client.table('threads').update({ 'messages': json.dumps(messages) }).eq('thread_id', thread_id).execute() logger.info(f"Successfully added message to thread {thread_id}") logger.debug(f"Updated message count: {len(messages)}") except Exception as e: logger.error(f"Failed to add message to thread {thread_id}: {str(e)}", exc_info=True) raise async def get_messages( self, thread_id: str, hide_tool_msgs: bool = False, only_latest_assistant: bool = False, regular_list: bool = True ) -> List[Dict[str, Any]]: """Retrieve messages from a thread with optional filtering.""" logger.debug(f"Retrieving messages for thread {thread_id}") logger.debug(f"Filters: hide_tool_msgs={hide_tool_msgs}, only_latest_assistant={only_latest_assistant}, regular_list={regular_list}") try: client = await self.db.client thread = await client.table('threads').select('*').eq('thread_id', thread_id).single().execute() if not thread.data: logger.warning(f"Thread {thread_id} not found") return [] messages = json.loads(thread.data['messages']) logger.debug(f"Retrieved {len(messages)} messages") if only_latest_assistant: for msg in reversed(messages): if msg.get('role') == 'assistant': logger.debug("Returning only latest assistant message") return [msg] logger.debug("No assistant messages found") return [] if hide_tool_msgs: messages = [ {k: v for k, v in msg.items() if k != 'tool_calls'} for msg in messages if msg.get('role') != 'tool' ] logger.debug(f"Filtered out tool messages. Remaining: {len(messages)}") if regular_list: messages = [ msg for msg in messages if msg.get('role') in ['system', 'assistant', 'tool', 'user'] ] logger.debug(f"Filtered to regular messages. Count: {len(messages)}") return messages except Exception as e: logger.error(f"Failed to get messages for thread {thread_id}: {str(e)}", exc_info=True) raise async def _update_message(self, thread_id: str, message: Dict[str, Any]): """Update an existing message in the thread.""" client = await self.db.client thread = await client.table('threads').select('*').eq('thread_id', thread_id).single().execute() if not thread.data: return messages = json.loads(thread.data['messages']) # Find and update the last assistant message for i in reversed(range(len(messages))): if messages[i].get('role') == 'assistant': messages[i] = message break await client.table('threads').update({ 'messages': json.dumps(messages) }).eq('thread_id', thread_id).execute() # async def cleanup_incomplete_tool_calls(self, thread_id: str): # """Clean up incomplete tool calls in a thread.""" # logger.info(f"Cleaning up incomplete tool calls in thread {thread_id}") # try: # messages = await self.get_messages(thread_id) # last_assistant_message = next((m for m in reversed(messages) # if m['role'] == 'assistant' and 'tool_calls' in m), None) # if last_assistant_message: # tool_calls = last_assistant_message.get('tool_calls', []) # tool_responses = [m for m in messages[messages.index(last_assistant_message)+1:] # if m['role'] == 'tool'] # logger.debug(f"Found {len(tool_calls)} tool calls and {len(tool_responses)} responses") # if len(tool_calls) != len(tool_responses): # failed_tool_results = [] # for tool_call in tool_calls[len(tool_responses):]: # failed_tool_result = { # "role": "tool", # "tool_call_id": tool_call['id'], # "name": tool_call['function']['name'], # "content": "ToolResult(success=False, output='Execution interrupted. Session was stopped.')" # } # failed_tool_results.append(failed_tool_result) # assistant_index = messages.index(last_assistant_message) # messages[assistant_index+1:assistant_index+1] = failed_tool_results # client = await self.db.client # await client.table('threads').update({ # 'messages': json.dumps(messages) # }).eq('thread_id', thread_id).execute() # logger.info(f"Successfully cleaned up {len(failed_tool_results)} incomplete tool calls") # return True # else: # logger.debug("No assistant message with tool calls found") # return False # except Exception as e: # logger.error(f"Failed to cleanup incomplete tool calls: {str(e)}", exc_info=True) # raise async def run_thread( self, thread_id: str, system_message: Dict[str, Any], model_name: str, temperature: float = 0, max_tokens: Optional[int] = None, tool_choice: str = "auto", temporary_message: Optional[Dict[str, Any]] = None, native_tool_calling: bool = False, xml_tool_calling: bool = False, execute_tools: bool = True, stream: bool = False, execute_tools_on_stream: bool = False, parallel_tool_execution: bool = False, tool_parser: Optional[ToolParserBase] = None, tool_executor: Optional[ToolExecutorBase] = None, results_adder: Optional[ResultsAdderBase] = None ) -> Union[Dict[str, Any], AsyncGenerator]: """Run a conversation thread with specified parameters.""" logger.info(f"Starting thread execution for thread {thread_id}") logger.debug(f"Parameters: model={model_name}, temperature={temperature}, max_tokens={max_tokens}, " f"tool_choice={tool_choice}, native_tool_calling={native_tool_calling}, " f"xml_tool_calling={xml_tool_calling}, execute_tools={execute_tools}, stream={stream}, " f"execute_tools_on_stream={execute_tools_on_stream}, " f"parallel_tool_execution={parallel_tool_execution}") try: # 1. Get messages from thread messages = await self.get_messages(thread_id) # 2. Prepare messages for LLM + add temporary message if it exists prepared_messages = [system_message] + messages if temporary_message: prepared_messages.append(temporary_message) logger.debug("Added temporary message to prepared messages") if native_tool_calling and xml_tool_calling: logger.error("Invalid configuration: Cannot use both native and XML tool calling") raise ValueError("Cannot use both native LLM tool calling and XML tool calling simultaneously") if native_tool_calling or xml_tool_calling: logger.debug("Initializing tool components") if tool_parser is None: tool_parser = XMLToolParser(tool_registry=self.tool_registry) if xml_tool_calling else StandardToolParser() logger.debug(f"Using {tool_parser.__class__.__name__} for tool parsing") if tool_executor is None: tool_executor = XMLToolExecutor(parallel=parallel_tool_execution, tool_registry=self.tool_registry) if xml_tool_calling else StandardToolExecutor(parallel=parallel_tool_execution) logger.debug(f"Using {tool_executor.__class__.__name__} for tool execution") if results_adder is None: results_adder = XMLResultsAdder(self) if xml_tool_calling else StandardResultsAdder(self) logger.debug(f"Using {results_adder.__class__.__name__} for results adding") openapi_tool_schemas = None if native_tool_calling: openapi_tool_schemas = self.tool_registry.get_openapi_schemas() available_functions = self.tool_registry.get_available_functions() logger.debug(f"Retrieved {len(openapi_tool_schemas)} OpenAPI tool schemas") elif xml_tool_calling: available_functions = self.tool_registry.get_available_functions() logger.debug(f"Retrieved {len(available_functions)} available functions for XML tool calling") else: available_functions = {} logger.debug("No tool calling enabled") logger.info("Making LLM API call") llm_response = await self._run_thread_completion( messages=prepared_messages, model_name=model_name, temperature=temperature, max_tokens=max_tokens, tools=openapi_tool_schemas, tool_choice=tool_choice if native_tool_calling else None, stream=stream ) response_processor = LLMResponseProcessor( thread_id=thread_id, available_functions=available_functions, add_message_callback=self.add_message, update_message_callback=self._update_message, get_messages_callback=self.get_messages, parallel_tool_execution=parallel_tool_execution, tool_parser=tool_parser, tool_executor=tool_executor, results_adder=results_adder ) if stream: logger.info("Processing streaming response") return response_processor.process_stream( response_stream=llm_response, execute_tools=execute_tools, execute_tools_on_stream=execute_tools_on_stream ) else: logger.info("Processing non-streaming response") await response_processor.process_response( response=llm_response, execute_tools=execute_tools ) return llm_response except Exception as e: logger.error(f"Error in run_thread: {str(e)}", exc_info=True) return { "status": "error", "message": str(e) } async def _run_thread_completion( self, messages: List[Dict[str, Any]], model_name: str, temperature: float, max_tokens: Optional[int], tools: Optional[List[Dict[str, Any]]], tool_choice: Optional[str], stream: bool ) -> Union[Any, AsyncGenerator]: """Get completion from LLM API.""" logger.debug(f"Making LLM API call with model {model_name}") try: response = await make_llm_api_call( messages, model_name, temperature=temperature, max_tokens=max_tokens, tools=tools, tool_choice=tool_choice, stream=stream ) logger.debug("Successfully received LLM API response") return response except Exception as e: logger.error(f"Failed to make LLM API call: {str(e)}", exc_info=True) raise