""" LLM API interface for making calls to various language models. This module provides a unified interface for making API calls to different LLM providers (OpenAI, Anthropic, Groq, etc.) using LiteLLM. It includes support for: - Streaming responses - Tool calls and function calling - Retry logic with exponential backoff - Model-specific configurations - Comprehensive error handling and logging """ from typing import Union, Dict, Any, Optional, AsyncGenerator, List import os import json import asyncio from openai import OpenAIError import litellm from backend.utils.logger import logger # Constants MAX_RETRIES = 3 RATE_LIMIT_DELAY = 30 RETRY_DELAY = 5 class LLMError(Exception): """Base exception for LLM-related errors.""" pass class LLMRetryError(LLMError): """Exception raised when retries are exhausted.""" pass def setup_api_keys() -> None: """Set up API keys from environment variables.""" providers = ['OPENAI', 'ANTHROPIC', 'GROQ'] for provider in providers: key = os.environ.get(f'{provider}_API_KEY') if key: logger.debug(f"API key set for provider: {provider}") else: logger.warning(f"No API key found for provider: {provider}") async def handle_error(error: Exception, attempt: int, max_attempts: int) -> None: """Handle API errors with appropriate delays and logging.""" delay = RATE_LIMIT_DELAY if isinstance(error, litellm.exceptions.RateLimitError) else RETRY_DELAY logger.warning(f"Error on attempt {attempt + 1}/{max_attempts}: {str(error)}") logger.debug(f"Waiting {delay} seconds before retry...") await asyncio.sleep(delay) def prepare_params( messages: List[Dict[str, Any]], model_name: str, temperature: float = 0, max_tokens: Optional[int] = None, response_format: Optional[Any] = None, tools: Optional[List[Dict[str, Any]]] = None, tool_choice: str = "auto", api_key: Optional[str] = None, api_base: Optional[str] = None, stream: bool = False, top_p: Optional[float] = None ) -> Dict[str, Any]: """Prepare parameters for the API call.""" params = { "model": model_name, "messages": messages, "temperature": temperature, "response_format": response_format, "top_p": top_p, "stream": stream, } if api_key: params["api_key"] = api_key if api_base: params["api_base"] = api_base # Handle token limits if max_tokens is not None: param_name = "max_completion_tokens" if 'o1' in model_name else "max_tokens" params[param_name] = max_tokens # Add tools if provided if tools: params.update({ "tools": tools, "tool_choice": tool_choice }) logger.debug(f"Added {len(tools)} tools to API parameters") # Add Claude-specific headers if "claude" in model_name.lower() or "anthropic" in model_name.lower(): params["extra_headers"] = { "anthropic-beta": "max-tokens-3-5-sonnet-2024-07-15" } logger.debug("Added Claude-specific headers") return params async def make_llm_api_call( messages: List[Dict[str, Any]], model_name: str, response_format: Optional[Any] = None, temperature: float = 0, max_tokens: Optional[int] = None, tools: Optional[List[Dict[str, Any]]] = None, tool_choice: str = "auto", api_key: Optional[str] = None, api_base: Optional[str] = None, stream: bool = False, top_p: Optional[float] = None ) -> Union[Dict[str, Any], AsyncGenerator]: """ Make an API call to a language model using LiteLLM. Args: messages: List of message dictionaries for the conversation model_name: Name of the model to use (e.g., "gpt-4", "claude-3") response_format: Desired format for the response temperature: Sampling temperature (0-1) max_tokens: Maximum tokens in the response tools: List of tool definitions for function calling tool_choice: How to select tools ("auto" or "none") api_key: Override default API key api_base: Override default API base URL stream: Whether to stream the response top_p: Top-p sampling parameter Returns: Union[Dict[str, Any], AsyncGenerator]: API response or stream Raises: LLMRetryError: If API call fails after retries LLMError: For other API-related errors """ logger.info(f"Making LLM API call to model: {model_name}") params = prepare_params( messages=messages, model_name=model_name, temperature=temperature, max_tokens=max_tokens, response_format=response_format, tools=tools, tool_choice=tool_choice, api_key=api_key, api_base=api_base, stream=stream, top_p=top_p ) last_error = None for attempt in range(MAX_RETRIES): try: logger.debug(f"Attempt {attempt + 1}/{MAX_RETRIES}") logger.debug(f"API request parameters: {json.dumps(params, indent=2)}") response = await litellm.acompletion(**params) logger.info(f"Successfully received API response from {model_name}") logger.debug(f"Response: {response}") return response except (litellm.exceptions.RateLimitError, OpenAIError, json.JSONDecodeError) as e: last_error = e await handle_error(e, attempt, MAX_RETRIES) except Exception as e: logger.error(f"Unexpected error during API call: {str(e)}", exc_info=True) raise LLMError(f"API call failed: {str(e)}") error_msg = f"Failed to make API call after {MAX_RETRIES} attempts" if last_error: error_msg += f". Last error: {str(last_error)}" logger.error(error_msg, exc_info=True) raise LLMRetryError(error_msg) # Initialize API keys on module import setup_api_keys()