import os
import json
import re
from uuid import uuid4
from typing import Optional
# from agent.tools.message_tool import MessageTool
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.sb_expose_tool import SandboxExposeTool
from agent.tools.web_search_tool import WebSearchTool
from dotenv import load_dotenv
from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.tools.sb_browser_tool import SandboxBrowserTool
from agent.tools.data_providers_tool import DataProvidersTool
from agent.prompt import get_system_prompt
from sandbox.sandbox import create_sandbox, get_or_start_sandbox
from utils.billing import check_billing_status, get_account_id_from_thread
load_dotenv()
async def run_agent(
thread_id: str,
project_id: str,
sandbox,
stream: bool,
thread_manager: Optional[ThreadManager] = None,
native_max_auto_continues: int = 25,
max_iterations: int = 150,
model_name: str = "anthropic/claude-3-7-sonnet-latest",
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True
):
"""Run the development agent with specified configuration."""
if not thread_manager:
thread_manager = ThreadManager()
client = await thread_manager.db.client
# Get account ID from thread for billing checks
account_id = await get_account_id_from_thread(client, thread_id)
if not account_id:
raise ValueError("Could not determine account ID for thread")
# Note: Billing checks are now done in api.py before this function is called
thread_manager.add_tool(SandboxShellTool, sandbox=sandbox)
thread_manager.add_tool(SandboxFilesTool, sandbox=sandbox)
thread_manager.add_tool(SandboxBrowserTool, sandbox=sandbox, thread_id=thread_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxDeployTool, sandbox=sandbox)
thread_manager.add_tool(SandboxExposeTool, sandbox=sandbox)
thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool
if os.getenv("TAVILY_API_KEY"):
thread_manager.add_tool(WebSearchTool)
else:
print("TAVILY_API_KEY not found, WebSearchTool will not be available.")
if os.getenv("RAPID_API_KEY"):
thread_manager.add_tool(DataProvidersTool)
system_message = { "role": "system", "content": get_system_prompt() }
iteration_count = 0
continue_execution = True
while continue_execution and iteration_count < max_iterations:
iteration_count += 1
print(f"Running iteration {iteration_count}...")
# Billing check on each iteration - still needed within the iterations
can_run, message, subscription = await check_billing_status(client, account_id)
if not can_run:
error_msg = f"Billing limit reached: {message}"
# Yield a special message to indicate billing limit reached
yield {
"type": "status",
"status": "stopped",
"message": error_msg
}
break
# Check if last message is from assistant using direct Supabase query
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
if latest_message.data and len(latest_message.data) > 0:
message_type = latest_message.data[0].get('type')
if message_type == 'assistant':
print(f"Last message was from assistant, stopping execution")
continue_execution = False
break
# Get the latest message from messages table that its type is browser_state
latest_browser_state = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
temporary_message = None
if latest_browser_state.data and len(latest_browser_state.data) > 0:
try:
content = json.loads(latest_browser_state.data[0]["content"])
screenshot_base64 = content["screenshot_base64"]
# Create a copy of the browser state without screenshot
browser_state = content.copy()
browser_state.pop('screenshot_base64', None)
browser_state.pop('screenshot_url', None)
browser_state.pop('screenshot_url_base64', None)
temporary_message = { "role": "user", "content": [] }
if browser_state:
temporary_message["content"].append({
"type": "text",
"text": f"The following is the current state of the browser:\n{browser_state}"
})
if screenshot_base64:
temporary_message["content"].append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{screenshot_base64}",
}
})
else:
print("@@@@@ THIS TIME NO SCREENSHOT!!")
except Exception as e:
print(f"Error parsing browser state: {e}")
# print(latest_browser_state.data[0])
max_tokens = 64000 if "sonnet" in model_name.lower() else None
response = await thread_manager.run_thread(
thread_id=thread_id,
system_prompt=system_message,
stream=stream,
llm_model=model_name,
llm_temperature=0,
llm_max_tokens=max_tokens,
tool_choice="auto",
max_xml_tool_calls=1,
temporary_message=temporary_message,
processor_config=ProcessorConfig(
xml_tool_calling=True,
native_tool_calling=False,
execute_tools=True,
execute_on_stream=True,
tool_execution_strategy="parallel",
xml_adding_strategy="user_message"
),
native_max_auto_continues=native_max_auto_continues,
include_xml_examples=True,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort,
enable_context_manager=enable_context_manager
)
if isinstance(response, dict) and "status" in response and response["status"] == "error":
yield response
break
# Track if we see ask or complete tool calls
last_tool_call = None
async for chunk in response:
# print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging
# Check for XML versions like or in assistant content chunks
if chunk.get('type') == 'assistant' and 'content' in chunk:
try:
# The content field might be a JSON string or object
content = chunk.get('content', '{}')
if isinstance(content, str):
assistant_content_json = json.loads(content)
else:
assistant_content_json = content
# The actual text content is nested within
assistant_text = assistant_content_json.get('content', '')
if isinstance(assistant_text, str): # Ensure it's a string
# Check for the closing tags as they signal the end of the tool usage
if '' in assistant_text or '' in assistant_text:
xml_tool = 'ask' if '' in assistant_text else 'complete'
last_tool_call = xml_tool
print(f"Agent used XML tool: {xml_tool}")
except json.JSONDecodeError:
# Handle cases where content might not be valid JSON
print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}")
except Exception as e:
print(f"Error processing assistant chunk: {e}")
yield chunk
# Check if we should stop based on the last tool call
if last_tool_call in ['ask', 'complete']:
print(f"Agent decided to stop with tool: {last_tool_call}")
continue_execution = False
# TESTING
async def test_agent():
"""Test function to run the agent with a sample query"""
from agentpress.thread_manager import ThreadManager
from services.supabase import DBConnection
# Initialize ThreadManager
thread_manager = ThreadManager()
# Create a test thread directly with Postgres function
client = await DBConnection().client
try:
# Get user's personal account
account_result = await client.rpc('get_personal_account').execute()
# if not account_result.data:
# print("Error: No personal account found")
# return
account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"
if not account_id:
print("Error: Could not get account ID")
return
# Find or create a test project in the user's account
project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()
if project_result.data and len(project_result.data) > 0:
# Use existing test project
project_id = project_result.data[0]['project_id']
print(f"\nš Using existing test project: {project_id}")
else:
# Create new test project if none exists
project_result = await client.table('projects').insert({
"name": "test11",
"account_id": account_id
}).execute()
project_id = project_result.data[0]['project_id']
print(f"\n⨠Created new test project: {project_id}")
# Create a thread for this project
thread_result = await client.table('threads').insert({
'project_id': project_id,
'account_id': account_id
}).execute()
thread_data = thread_result.data[0] if thread_result.data else None
if not thread_data:
print("Error: No thread data returned")
return
thread_id = thread_data['thread_id']
except Exception as e:
print(f"Error setting up thread: {str(e)}")
return
print(f"\nš¤ Agent Thread Created: {thread_id}\n")
# Interactive message input loop
while True:
# Get user input
user_message = input("\nš¬ Enter your message (or 'exit' to quit): ")
if user_message.lower() == 'exit':
break
if not user_message.strip():
print("\nš Running agent...\n")
await process_agent_response(thread_id, project_id, thread_manager)
continue
# Add the user message to the thread
await thread_manager.add_message(
thread_id=thread_id,
type="user",
content={
"role": "user",
"content": user_message
},
is_llm_message=True
)
print("\nš Running agent...\n")
await process_agent_response(thread_id, project_id, thread_manager)
print("\nš Test completed. Goodbye!")
async def process_agent_response(
thread_id: str,
project_id: str,
thread_manager: ThreadManager,
stream: bool = True,
model_name: str = "anthropic/claude-3-7-sonnet-latest",
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True
):
"""Process the streaming response from the agent."""
chunk_counter = 0
current_response = ""
tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status
# Create a test sandbox for processing
sandbox_pass = str(uuid4())
sandbox = create_sandbox(sandbox_pass)
print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")
async for chunk in run_agent(
thread_id=thread_id,
project_id=project_id,
sandbox=sandbox,
stream=stream,
thread_manager=thread_manager,
native_max_auto_continues=25,
model_name=model_name,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort,
enable_context_manager=enable_context_manager
):
chunk_counter += 1
# print(f"CHUNK: {chunk}") # Uncomment for debugging
if chunk.get('type') == 'assistant':
# Try parsing the content JSON
try:
# Handle content as string or object
content = chunk.get('content', '{}')
if isinstance(content, str):
content_json = json.loads(content)
else:
content_json = content
actual_content = content_json.get('content', '')
# Print the actual assistant text content as it comes
if actual_content:
# Check if it contains XML tool tags, if so, print the whole tag for context
if '<' in actual_content and '>' in actual_content:
# Avoid printing potentially huge raw content if it's not just text
if len(actual_content) < 500: # Heuristic limit
print(actual_content, end='', flush=True)
else:
# Maybe just print a summary if it's too long or contains complex XML
if '' in actual_content: print("...", end='', flush=True)
elif '' in actual_content: print("...", end='', flush=True)
else: print("...", end='', flush=True) # Generic case
else:
# Regular text content
print(actual_content, end='', flush=True)
current_response += actual_content # Accumulate only text part
except json.JSONDecodeError:
# If content is not JSON (e.g., just a string chunk), print directly
raw_content = chunk.get('content', '')
print(raw_content, end='', flush=True)
current_response += raw_content
except Exception as e:
print(f"\nError processing assistant chunk: {e}\n")
elif chunk.get('type') == 'tool': # Updated from 'tool_result'
# Add timestamp and format tool result nicely
tool_name = "UnknownTool" # Try to get from metadata if available
result_content = "No content"
# Parse metadata - handle both string and dict formats
metadata = chunk.get('metadata', {})
if isinstance(metadata, str):
try:
metadata = json.loads(metadata)
except json.JSONDecodeError:
metadata = {}
linked_assistant_msg_id = metadata.get('assistant_message_id')
parsing_details = metadata.get('parsing_details')
if parsing_details:
tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details
try:
# Content is a JSON string or object
content = chunk.get('content', '{}')
if isinstance(content, str):
content_json = json.loads(content)
else:
content_json = content
# The actual tool result is nested inside content.content
tool_result_str = content_json.get('content', '')
# Extract the actual tool result string (remove outer tag if present)
match = re.search(rf'<{tool_name}>(.*?){tool_name}>', tool_result_str, re.DOTALL)
if match:
result_content = match.group(1).strip()
# Try to parse the result string itself as JSON for pretty printing
try:
result_obj = json.loads(result_content)
result_content = json.dumps(result_obj, indent=2)
except json.JSONDecodeError:
# Keep as string if not JSON
pass
else:
# Fallback if tag extraction fails
result_content = tool_result_str
except json.JSONDecodeError:
result_content = chunk.get('content', 'Error parsing tool content')
except Exception as e:
result_content = f"Error processing tool chunk: {e}"
print(f"\n\nš ļø TOOL RESULT [{tool_name}] ā {result_content}")
elif chunk.get('type') == 'status':
# Log tool status changes
try:
# Handle content as string or object
status_content = chunk.get('content', '{}')
if isinstance(status_content, str):
status_content = json.loads(status_content)
status_type = status_content.get('status_type')
function_name = status_content.get('function_name', '')
xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
tool_name = xml_tag_name or function_name # Prefer XML tag name
if status_type == 'tool_started' and tool_name:
tool_usage_counter += 1
print(f"\nā³ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
print(" " + "-" * 40)
# Return to the current content display
if current_response:
print("\nContinuing response:", flush=True)
print(current_response, end='', flush=True)
elif status_type == 'tool_completed' and tool_name:
status_emoji = "ā
"
print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
elif status_type == 'finish':
finish_reason = status_content.get('finish_reason', '')
if finish_reason:
print(f"\nš Finished: {finish_reason}")
# else: # Print other status types if needed for debugging
# print(f"\nā¹ļø STATUS: {chunk.get('content')}")
except json.JSONDecodeError:
print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
except Exception as e:
print(f"\nError processing status chunk: {e}")
# Removed elif chunk.get('type') == 'tool_call': block
# Update final message
print(f"\n\nā
Agent run completed with {tool_usage_counter} tool executions")
if __name__ == "__main__":
import asyncio
# Configure any environment variables or setup needed for testing
load_dotenv() # Ensure environment variables are loaded
# Run the test function
asyncio.run(test_agent())