import os
import json
import asyncio
from typing import Optional, Dict, List, Any, AsyncGenerator, Tuple
from dataclasses import dataclass, field
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.sb_expose_tool import SandboxExposeTool
from agent.tools.web_search_tool import SandboxWebSearchTool
from dotenv import load_dotenv
from utils.config import config
from flags.flags import is_enabled
from agent.agent_builder_prompt import get_agent_builder_prompt
from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.tools.sb_browser_tool import SandboxBrowserTool
from agent.tools.data_providers_tool import DataProvidersTool
from agent.tools.expand_msg_tool import ExpandMessageTool
from agent.prompt import get_system_prompt
from utils.logger import logger
from utils.auth_utils import get_account_id_from_thread
from services.billing import check_billing_status
from agent.tools.sb_vision_tool import SandboxVisionTool
from agent.tools.sb_image_edit_tool import SandboxImageEditTool
from services.langfuse import langfuse
from langfuse.client import StatefulTraceClient
from agent.gemini_prompt import get_gemini_system_prompt
from agent.tools.mcp_tool_wrapper import MCPToolWrapper
from agentpress.tool import SchemaType
load_dotenv()
@dataclass
class AgentRunConfig:
thread_id: str
project_id: str
stream: bool
thread_manager: Optional[ThreadManager] = None
native_max_auto_continues: int = 25
max_iterations: int = 100
model_name: str = "anthropic/claude-sonnet-4-20250514"
enable_thinking: Optional[bool] = False
reasoning_effort: Optional[str] = 'low'
enable_context_manager: bool = True
agent_config: Optional[dict] = None
trace: Optional[StatefulTraceClient] = None
is_agent_builder: Optional[bool] = False
target_agent_id: Optional[str] = None
@dataclass
class ExecutionContext:
client: Any
account_id: str
project_data: Dict
sandbox_info: Dict
mcp_wrapper_instance: Optional[MCPToolWrapper] = None
class AgentExecutionError(Exception):
pass
def get_model_max_tokens(model_name: str) -> Optional[int]:
if "sonnet" in model_name.lower():
return 8192
elif "gpt-4" in model_name.lower():
return 4096
elif "gemini-2.5-pro" in model_name.lower():
return 64000
return None
def is_vision_model(model_name: str) -> bool:
return any(x in model_name.lower() for x in ['gemini', 'anthropic', 'openai'])
async def setup_execution_context(config: AgentRunConfig) -> ExecutionContext:
client = await config.thread_manager.db.client
account_id = await get_account_id_from_thread(client, config.thread_id)
if not account_id:
raise AgentExecutionError("Could not determine account ID for thread")
project = await client.table('projects').select('*').eq('project_id', config.project_id).execute()
if not project.data or len(project.data) == 0:
raise AgentExecutionError(f"Project {config.project_id} not found")
project_data = project.data[0]
sandbox_info = project_data.get('sandbox', {})
if not sandbox_info.get('id'):
raise AgentExecutionError(f"No sandbox found for project {config.project_id}")
return ExecutionContext(
client=client,
account_id=account_id,
project_data=project_data,
sandbox_info=sandbox_info
)
def register_agent_builder_tools(thread_manager: ThreadManager, target_agent_id: str):
from agent.tools.agent_builder_tools.agent_config_tool import AgentConfigTool
from agent.tools.agent_builder_tools.mcp_search_tool import MCPSearchTool
from agent.tools.agent_builder_tools.credential_profile_tool import CredentialProfileTool
from agent.tools.agent_builder_tools.workflow_tool import WorkflowTool
from agent.tools.agent_builder_tools.trigger_tool import TriggerTool
from services.supabase import DBConnection
db = DBConnection()
thread_manager.add_tool(AgentConfigTool, thread_manager=thread_manager, db_connection=db, agent_id=target_agent_id)
thread_manager.add_tool(MCPSearchTool, thread_manager=thread_manager, db_connection=db, agent_id=target_agent_id)
thread_manager.add_tool(CredentialProfileTool, thread_manager=thread_manager, db_connection=db, agent_id=target_agent_id)
thread_manager.add_tool(WorkflowTool, thread_manager=thread_manager, db_connection=db, agent_id=target_agent_id)
thread_manager.add_tool(TriggerTool, thread_manager=thread_manager, db_connection=db, agent_id=target_agent_id)
def register_default_tools(thread_manager: ThreadManager, agent_config: AgentRunConfig):
thread_manager.add_tool(SandboxShellTool, project_id=agent_config.project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxFilesTool, project_id=agent_config.project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxBrowserTool, project_id=agent_config.project_id, thread_id=agent_config.thread_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxDeployTool, project_id=agent_config.project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxExposeTool, project_id=agent_config.project_id, thread_manager=thread_manager)
thread_manager.add_tool(ExpandMessageTool, thread_id=agent_config.thread_id, thread_manager=thread_manager)
thread_manager.add_tool(MessageTool)
thread_manager.add_tool(SandboxWebSearchTool, project_id=agent_config.project_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxVisionTool, project_id=agent_config.project_id, thread_id=agent_config.thread_id, thread_manager=thread_manager)
thread_manager.add_tool(SandboxImageEditTool, project_id=agent_config.project_id, thread_id=agent_config.thread_id, thread_manager=thread_manager)
if config.RAPID_API_KEY:
thread_manager.add_tool(DataProvidersTool)
def register_custom_tools(thread_manager: ThreadManager, agent_config: AgentRunConfig, enabled_tools: Dict):
thread_manager.add_tool(ExpandMessageTool, thread_id=agent_config.thread_id, thread_manager=thread_manager)
thread_manager.add_tool(MessageTool)
tool_mapping = {
'sb_shell_tool': (SandboxShellTool, {'project_id': agent_config.project_id, 'thread_manager': thread_manager}),
'sb_files_tool': (SandboxFilesTool, {'project_id': agent_config.project_id, 'thread_manager': thread_manager}),
'sb_browser_tool': (SandboxBrowserTool, {'project_id': agent_config.project_id, 'thread_id': agent_config.thread_id, 'thread_manager': thread_manager}),
'sb_deploy_tool': (SandboxDeployTool, {'project_id': agent_config.project_id, 'thread_manager': thread_manager}),
'sb_expose_tool': (SandboxExposeTool, {'project_id': agent_config.project_id, 'thread_manager': thread_manager}),
'web_search_tool': (SandboxWebSearchTool, {'project_id': agent_config.project_id, 'thread_manager': thread_manager}),
'sb_vision_tool': (SandboxVisionTool, {'project_id': agent_config.project_id, 'thread_id': agent_config.thread_id, 'thread_manager': thread_manager}),
}
for tool_name, (tool_class, kwargs) in tool_mapping.items():
if enabled_tools.get(tool_name, {}).get('enabled', False):
thread_manager.add_tool(tool_class, **kwargs)
if config.RAPID_API_KEY and enabled_tools.get('data_providers_tool', {}).get('enabled', False):
thread_manager.add_tool(DataProvidersTool)
async def setup_pipedream_mcp_config(custom_mcp: Dict, account_id: str) -> Dict:
if 'config' not in custom_mcp:
custom_mcp['config'] = {}
if not custom_mcp['config'].get('external_user_id'):
profile_id = custom_mcp['config'].get('profile_id')
if profile_id:
try:
from pipedream.profiles import get_profile_manager
from services.supabase import DBConnection
profile_db = DBConnection()
profile_manager = get_profile_manager(profile_db)
profile = await profile_manager.get_profile(account_id, profile_id)
if profile:
custom_mcp['config']['external_user_id'] = profile.external_user_id
logger.info(f"Retrieved external_user_id from profile {profile_id} for Pipedream MCP")
else:
logger.error(f"Could not find profile {profile_id} for Pipedream MCP")
except Exception as e:
logger.error(f"Error retrieving external_user_id from profile {profile_id}: {e}")
if 'headers' in custom_mcp['config'] and 'x-pd-app-slug' in custom_mcp['config']['headers']:
custom_mcp['config']['app_slug'] = custom_mcp['config']['headers']['x-pd-app-slug']
return custom_mcp
def create_mcp_config(custom_mcp: Dict, custom_type: str) -> Dict:
return {
'name': custom_mcp['name'],
'qualifiedName': f"custom_{custom_type}_{custom_mcp['name'].replace(' ', '_').lower()}",
'config': custom_mcp['config'],
'enabledTools': custom_mcp.get('enabledTools', []),
'instructions': custom_mcp.get('instructions', ''),
'isCustom': True,
'customType': custom_type
}
async def setup_mcp_tools(thread_manager: ThreadManager, config: AgentRunConfig, context: ExecutionContext) -> Optional[MCPToolWrapper]:
if not config.agent_config:
return None
all_mcps = []
if config.agent_config.get('configured_mcps'):
all_mcps.extend(config.agent_config['configured_mcps'])
if config.agent_config.get('custom_mcps'):
for custom_mcp in config.agent_config['custom_mcps']:
custom_type = custom_mcp.get('customType', custom_mcp.get('type', 'sse'))
if custom_type == 'pipedream':
custom_mcp = await setup_pipedream_mcp_config(custom_mcp, context.account_id)
mcp_config = create_mcp_config(custom_mcp, custom_type)
all_mcps.append(mcp_config)
if not all_mcps:
return None
logger.info(f"Registering MCP tool wrapper for {len(all_mcps)} MCP servers")
thread_manager.add_tool(MCPToolWrapper, mcp_configs=all_mcps)
mcp_wrapper_instance = None
for tool_name, tool_info in thread_manager.tool_registry.tools.items():
if isinstance(tool_info['instance'], MCPToolWrapper):
mcp_wrapper_instance = tool_info['instance']
break
if mcp_wrapper_instance:
try:
await mcp_wrapper_instance.initialize_and_register_tools()
logger.info("MCP tools initialized successfully")
updated_schemas = mcp_wrapper_instance.get_schemas()
logger.info(f"MCP wrapper has {len(updated_schemas)} schemas available")
for method_name, schema_list in updated_schemas.items():
if method_name != 'call_mcp_tool':
for schema in schema_list:
if schema.schema_type == SchemaType.OPENAPI:
thread_manager.tool_registry.tools[method_name] = {
"instance": mcp_wrapper_instance,
"schema": schema
}
logger.info(f"Registered dynamic MCP tool: {method_name}")
all_tools = list(thread_manager.tool_registry.tools.keys())
logger.info(f"All registered tools after MCP initialization: {all_tools}")
except Exception as e:
logger.error(f"Failed to initialize MCP tools: {e}")
return mcp_wrapper_instance
def setup_tools(thread_manager: ThreadManager, agent_config: AgentRunConfig) -> None:
if agent_config.is_agent_builder:
register_agent_builder_tools(thread_manager, agent_config.target_agent_id)
enabled_tools = None
if agent_config.agent_config and 'agentpress_tools' in agent_config.agent_config:
enabled_tools = agent_config.agent_config['agentpress_tools']
logger.info("Using custom tool configuration from agent")
if enabled_tools is None:
logger.info("No agent specified - registering all tools for full Suna capabilities")
register_default_tools(thread_manager, agent_config)
else:
logger.info("Custom agent specified - registering only enabled tools")
register_custom_tools(thread_manager, agent_config, enabled_tools)
def get_base_system_prompt(model_name: str) -> str:
if "gemini-2.5-flash" in model_name.lower() and "gemini-2.5-pro" not in model_name.lower():
return get_gemini_system_prompt()
return get_system_prompt()
def add_sample_response(system_content: str, model_name: str) -> str:
if "anthropic" not in model_name.lower():
sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt')
with open(sample_response_path, 'r') as file:
sample_response = file.read()
return system_content + "\n\n " + sample_response + ""
return system_content
async def add_knowledge_base_context(system_content: str, config: AgentRunConfig) -> str:
if not await is_enabled("knowledge_base"):
return system_content
try:
from services.supabase import DBConnection
kb_db = DBConnection()
kb_client = await kb_db.client
current_agent_id = config.agent_config.get('agent_id') if config.agent_config else None
kb_result = await kb_client.rpc('get_combined_knowledge_base_context', {
'p_thread_id': config.thread_id,
'p_agent_id': current_agent_id,
'p_max_tokens': 4000
}).execute()
if kb_result.data and kb_result.data.strip():
logger.info(f"Adding combined knowledge base context to system prompt")
return system_content + "\n\n" + kb_result.data
else:
logger.debug(f"No knowledge base context found")
except Exception as e:
logger.error(f"Error retrieving knowledge base context: {e}")
return system_content
def add_mcp_instructions(system_content: str, config: AgentRunConfig, mcp_wrapper_instance: Optional[MCPToolWrapper]) -> str:
if not (config.agent_config and (config.agent_config.get('configured_mcps') or config.agent_config.get('custom_mcps'))):
return system_content
if not (mcp_wrapper_instance and mcp_wrapper_instance._initialized):
return system_content
mcp_info = "\n\n--- MCP Tools Available ---\n"
mcp_info += "You have access to external MCP (Model Context Protocol) server tools.\n"
mcp_info += "MCP tools can be called directly using their native function names in the standard function calling format:\n"
mcp_info += '\n'
mcp_info += '\n'
mcp_info += 'value1\n'
mcp_info += 'value2\n'
mcp_info += '\n'
mcp_info += '\n\n'
mcp_info += "Available MCP tools:\n"
try:
registered_schemas = mcp_wrapper_instance.get_schemas()
for method_name, schema_list in registered_schemas.items():
if method_name == 'call_mcp_tool':
continue
for schema in schema_list:
if schema.schema_type == SchemaType.OPENAPI:
func_info = schema.schema.get('function', {})
description = func_info.get('description', 'No description available')
mcp_info += f"- **{method_name}**: {description}\n"
params = func_info.get('parameters', {})
props = params.get('properties', {})
if props:
mcp_info += f" Parameters: {', '.join(props.keys())}\n"
except Exception as e:
logger.error(f"Error listing MCP tools: {e}")
mcp_info += "- Error loading MCP tool list\n"
mcp_info += "\nšØ CRITICAL MCP TOOL RESULT INSTRUCTIONS šØ\n"
mcp_info += "When you use ANY MCP (Model Context Protocol) tools:\n"
mcp_info += "1. ALWAYS read and use the EXACT results returned by the MCP tool\n"
mcp_info += "2. For search tools: ONLY cite URLs, sources, and information from the actual search results\n"
mcp_info += "3. For any tool: Base your response entirely on the tool's output - do NOT add external information\n"
mcp_info += "4. DO NOT fabricate, invent, hallucinate, or make up any sources, URLs, or data\n"
mcp_info += "5. If you need more information, call the MCP tool again with different parameters\n"
mcp_info += "6. When writing reports/summaries: Reference ONLY the data from MCP tool results\n"
mcp_info += "7. If the MCP tool doesn't return enough information, explicitly state this limitation\n"
mcp_info += "8. Always double-check that every fact, URL, and reference comes from the MCP tool output\n"
mcp_info += "\nIMPORTANT: MCP tool results are your PRIMARY and ONLY source of truth for external data!\n"
mcp_info += "NEVER supplement MCP results with your training data or make assumptions beyond what the tools provide.\n"
return system_content + mcp_info
async def build_system_prompt(config: AgentRunConfig, mcp_wrapper_instance: Optional[MCPToolWrapper]) -> Dict:
base_prompt = get_base_system_prompt(config.model_name)
system_content = add_sample_response(base_prompt, config.model_name)
if config.agent_config and config.agent_config.get('system_prompt'):
custom_system_prompt = config.agent_config['system_prompt'].strip()
system_content = custom_system_prompt
logger.info(f"Using ONLY custom agent system prompt")
elif config.is_agent_builder:
system_content = get_agent_builder_prompt()
logger.info("Using agent builder system prompt")
else:
logger.info("Using default system prompt only")
system_content = await add_knowledge_base_context(system_content, config)
system_content = add_mcp_instructions(system_content, config, mcp_wrapper_instance)
return {"role": "system", "content": system_content}
async def get_browser_state_content(client: Any, thread_id: str, model_name: str, trace: Optional[StatefulTraceClient]) -> List[Dict]:
content_list = []
latest_browser_state_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
if not (latest_browser_state_msg.data and len(latest_browser_state_msg.data) > 0):
return content_list
try:
browser_content = latest_browser_state_msg.data[0]["content"]
if isinstance(browser_content, str):
browser_content = json.loads(browser_content)
screenshot_base64 = browser_content.get("screenshot_base64")
screenshot_url = browser_content.get("image_url")
browser_state_text = browser_content.copy()
browser_state_text.pop('screenshot_base64', None)
browser_state_text.pop('image_url', None)
if browser_state_text:
content_list.append({
"type": "text",
"text": f"The following is the current state of the browser:\n{json.dumps(browser_state_text, indent=2)}"
})
if is_vision_model(model_name):
if screenshot_url:
content_list.append({
"type": "image_url",
"image_url": {
"url": screenshot_url,
"format": "image/jpeg"
}
})
if trace:
trace.event(name="screenshot_url_added_to_temporary_message", level="DEFAULT")
elif screenshot_base64:
content_list.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{screenshot_base64}",
}
})
if trace:
trace.event(name="screenshot_base64_added_to_temporary_message", level="WARNING")
else:
logger.warning("Browser state found but no screenshot data.")
if trace:
trace.event(name="browser_state_found_but_no_screenshot_data", level="WARNING")
else:
logger.warning("Model doesn't support vision, skipping screenshot.")
if trace:
trace.event(name="model_doesnt_support_vision", level="WARNING")
except Exception as e:
logger.error(f"Error parsing browser state: {e}")
if trace:
trace.event(name="error_parsing_browser_state", level="ERROR", status_message=str(e))
return content_list
async def get_image_context_content(client: Any, thread_id: str) -> List[Dict]:
content_list = []
latest_image_context_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'image_context').order('created_at', desc=True).limit(1).execute()
if not (latest_image_context_msg.data and len(latest_image_context_msg.data) > 0):
return content_list
try:
image_context_content = latest_image_context_msg.data[0]["content"]
if isinstance(image_context_content, str):
image_context_content = json.loads(image_context_content)
base64_image = image_context_content.get("base64")
mime_type = image_context_content.get("mime_type")
file_path = image_context_content.get("file_path", "unknown file")
if base64_image and mime_type:
content_list.extend([
{
"type": "text",
"text": f"Here is the image you requested to see: '{file_path}'"
},
{
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{base64_image}",
}
}
])
else:
logger.warning(f"Image context found for '{file_path}' but missing base64 or mime_type.")
await client.table('messages').delete().eq('message_id', latest_image_context_msg.data[0]["message_id"]).execute()
except Exception as e:
logger.error(f"Error parsing image context: {e}")
return content_list
async def build_temporary_message(client: Any, config: AgentRunConfig, trace: Optional[StatefulTraceClient]) -> Optional[Dict]:
temp_message_content_list = []
browser_content = await get_browser_state_content(client, config.thread_id, config.model_name, trace)
temp_message_content_list.extend(browser_content)
image_content = await get_image_context_content(client, config.thread_id)
temp_message_content_list.extend(image_content)
if temp_message_content_list:
return {"role": "user", "content": temp_message_content_list}
return None
async def should_continue_execution(client: Any, thread_id: str, trace: Optional[StatefulTraceClient]) -> bool:
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
if latest_message.data and len(latest_message.data) > 0:
message_type = latest_message.data[0].get('type')
if message_type == 'assistant':
logger.info("Last message was from assistant, stopping execution")
if trace:
trace.event(name="last_message_from_assistant", level="DEFAULT")
return False
return True
async def check_billing_limits(client: Any, account_id: str, trace: Optional[StatefulTraceClient]) -> Tuple[bool, str]:
can_run, message, subscription = await check_billing_status(client, account_id)
if not can_run:
error_msg = f"Billing limit reached: {message}"
if trace:
trace.event(name="billing_limit_reached", level="ERROR", status_message=error_msg)
return False, error_msg
return True, ""
class ResponseProcessor:
def __init__(self, trace: Optional[StatefulTraceClient]):
self.trace = trace
self.last_tool_call = None
self.agent_should_terminate = False
self.full_response = ""
def check_termination_signal(self, chunk: Dict) -> None:
if chunk.get('type') != 'status':
return
try:
metadata = chunk.get('metadata', {})
if isinstance(metadata, str):
metadata = json.loads(metadata)
if metadata.get('agent_should_terminate'):
self.agent_should_terminate = True
logger.info("Agent termination signal detected")
if self.trace:
self.trace.event(name="agent_termination_signal_detected", level="DEFAULT")
content = chunk.get('content', {})
if isinstance(content, str):
content = json.loads(content)
if content.get('function_name'):
self.last_tool_call = content['function_name']
elif content.get('xml_tag_name'):
self.last_tool_call = content['xml_tag_name']
except Exception as e:
logger.debug(f"Error parsing status message for termination check: {e}")
def check_xml_tools(self, chunk: Dict) -> None:
if chunk.get('type') != 'assistant' or 'content' not in chunk:
return
try:
content = chunk.get('content', '{}')
if isinstance(content, str):
assistant_content_json = json.loads(content)
else:
assistant_content_json = content
assistant_text = assistant_content_json.get('content', '')
self.full_response += assistant_text
if isinstance(assistant_text, str):
for tool in ['ask', 'complete', 'web-browser-takeover']:
if f'{tool}>' in assistant_text:
self.last_tool_call = tool
logger.info(f"Agent used XML tool: {tool}")
if self.trace:
self.trace.event(name="agent_used_xml_tool", level="DEFAULT", status_message=f"Agent used XML tool: {tool}")
break
except json.JSONDecodeError:
logger.warning(f"Could not parse assistant content JSON: {chunk.get('content')}")
if self.trace:
self.trace.event(name="warning_could_not_parse_assistant_content_json", level="WARNING")
except Exception as e:
logger.error(f"Error processing assistant chunk: {e}")
if self.trace:
self.trace.event(name="error_processing_assistant_chunk", level="ERROR", status_message=str(e))
def process_chunk(self, chunk: Dict) -> None:
self.check_termination_signal(chunk)
self.check_xml_tools(chunk)
def should_terminate(self) -> bool:
return (self.agent_should_terminate or
self.last_tool_call in ['ask', 'complete', 'web-browser-takeover'])
async def process_llm_response(response: Any, processor: ResponseProcessor, trace: Optional[StatefulTraceClient]) -> AsyncGenerator[Dict, None]:
try:
if hasattr(response, '__aiter__') and not isinstance(response, dict):
async for chunk in response:
if isinstance(chunk, dict) and chunk.get('type') == 'status' and chunk.get('status') == 'error':
logger.error(f"Error chunk detected: {chunk.get('message', 'Unknown error')}")
if trace:
trace.event(name="error_chunk_detected", level="ERROR", status_message=chunk.get('message', 'Unknown error'))
yield chunk
return
processor.process_chunk(chunk)
yield chunk
else:
logger.error(f"Response is not iterable: {response}")
yield {
"type": "status",
"status": "error",
"message": "Response is not iterable"
}
except Exception as e:
error_msg = f"Error during response streaming: {str(e)}"
logger.error(error_msg)
if trace:
trace.event(name="error_during_response_streaming", level="ERROR", status_message=error_msg)
yield {
"type": "status",
"status": "error",
"message": error_msg
}
async def run_single_iteration(
config: AgentRunConfig,
context: ExecutionContext,
system_message: Dict,
temporary_message: Optional[Dict],
iteration_count: int
) -> AsyncGenerator[Dict, None]:
can_continue, error_msg = await check_billing_limits(context.client, context.account_id, config.trace)
if not can_continue:
yield {
"type": "status",
"status": "stopped",
"message": error_msg
}
return
if not await should_continue_execution(context.client, config.thread_id, config.trace):
return
max_tokens = get_model_max_tokens(config.model_name)
generation = config.trace.generation(name="thread_manager.run_thread") if config.trace else None
processor = ResponseProcessor(config.trace)
try:
response = await config.thread_manager.run_thread(
thread_id=config.thread_id,
system_prompt=system_message,
stream=config.stream,
llm_model=config.model_name,
llm_temperature=0,
llm_max_tokens=max_tokens,
tool_choice="auto",
max_xml_tool_calls=1,
temporary_message=temporary_message,
processor_config=ProcessorConfig(
xml_tool_calling=True,
native_tool_calling=False,
execute_tools=True,
execute_on_stream=True,
tool_execution_strategy="parallel",
xml_adding_strategy="user_message"
),
native_max_auto_continues=config.native_max_auto_continues,
include_xml_examples=True,
enable_thinking=config.enable_thinking,
reasoning_effort=config.reasoning_effort,
enable_context_manager=config.enable_context_manager,
generation=generation
)
if isinstance(response, dict) and response.get("status") == "error":
logger.error(f"Error response from run_thread: {response.get('message', 'Unknown error')}")
if config.trace:
config.trace.event(name="error_response_from_run_thread", level="ERROR", status_message=response.get('message', 'Unknown error'))
yield response
return
async for chunk in process_llm_response(response, processor, config.trace):
yield chunk
if processor.should_terminate():
logger.info(f"Agent decided to stop with tool: {processor.last_tool_call}")
if config.trace:
config.trace.event(name="agent_decided_to_stop_with_tool", level="DEFAULT", status_message=f"Agent decided to stop with tool: {processor.last_tool_call}")
if generation:
generation.end(output=processor.full_response, status_message="agent_stopped")
yield {
"type": "status",
"status": "completed",
"terminate": True
}
else:
if generation:
generation.end(output=processor.full_response)
except Exception as e:
error_msg = f"Error running thread: {str(e)}"
logger.error(error_msg)
if config.trace:
config.trace.event(name="error_running_thread", level="ERROR", status_message=error_msg)
if generation:
generation.end(output=processor.full_response, status_message=error_msg, level="ERROR")
yield {
"type": "status",
"status": "error",
"message": error_msg
}
async def setup_trace_input(config: AgentRunConfig, context: ExecutionContext) -> None:
if not config.trace:
return
latest_user_message = await context.client.table('messages').select('*').eq('thread_id', config.thread_id).eq('type', 'user').order('created_at', desc=True).limit(1).execute()
if latest_user_message.data and len(latest_user_message.data) > 0:
data = latest_user_message.data[0]['content']
if isinstance(data, str):
data = json.loads(data)
config.trace.update(input=data['content'])
async def run_agent(
thread_id: str,
project_id: str,
stream: bool,
thread_manager: Optional[ThreadManager] = None,
native_max_auto_continues: int = 25,
max_iterations: int = 100,
model_name: str = "anthropic/claude-sonnet-4-20250514",
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True,
agent_config: Optional[dict] = None,
trace: Optional[StatefulTraceClient] = None,
is_agent_builder: Optional[bool] = False,
target_agent_id: Optional[str] = None
):
logger.info(f"š Starting agent with model: {model_name}")
if agent_config:
logger.info(f"Using custom agent: {agent_config.get('name', 'Unknown')}")
config = AgentRunConfig(
thread_id=thread_id,
project_id=project_id,
stream=stream,
thread_manager=thread_manager,
native_max_auto_continues=native_max_auto_continues,
max_iterations=max_iterations,
model_name=model_name,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort,
enable_context_manager=enable_context_manager,
agent_config=agent_config,
trace=trace or langfuse.trace(name="run_agent", session_id=thread_id, metadata={"project_id": project_id}),
is_agent_builder=is_agent_builder or False,
target_agent_id=target_agent_id
)
config.thread_manager = ThreadManager(
trace=config.trace,
is_agent_builder=config.is_agent_builder,
target_agent_id=config.target_agent_id,
agent_config=config.agent_config
)
try:
context = await setup_execution_context(config)
setup_tools(config.thread_manager, config)
mcp_wrapper_instance = await setup_mcp_tools(config.thread_manager, config, context)
system_message = await build_system_prompt(config, mcp_wrapper_instance)
await setup_trace_input(config, context)
iteration_count = 0
while iteration_count < config.max_iterations:
iteration_count += 1
logger.info(f"š Running iteration {iteration_count} of {config.max_iterations}...")
temporary_message = await build_temporary_message(context.client, config, config.trace)
should_terminate = False
async for result in run_single_iteration(config, context, system_message, temporary_message, iteration_count):
yield result
if result.get('terminate'):
should_terminate = True
break
if result.get('type') == 'status' and result.get('status') in ['error', 'stopped']:
should_terminate = True
break
if should_terminate:
break
except AgentExecutionError as e:
error_msg = str(e)
logger.error(f"Agent execution error: {error_msg}")
if config.trace:
config.trace.event(name="agent_execution_error", level="ERROR", status_message=error_msg)
yield {
"type": "status",
"status": "error",
"message": error_msg
}
except Exception as e:
error_msg = f"Unexpected error in run_agent: {str(e)}"
logger.error(error_msg)
if config.trace:
config.trace.event(name="unexpected_error_in_run_agent", level="ERROR", status_message=error_msg)
yield {
"type": "status",
"status": "error",
"message": error_msg
}
finally:
asyncio.create_task(asyncio.to_thread(lambda: langfuse.flush()))