# Backend Architecture for Agent Workflow System ## Overview This document describes the scalable, modular, and extensible backend architecture for the agent workflow system, designed to work like Zapier but optimized for AI agent workflows. ## Architecture Principles 1. **Scalability**: Horizontal scaling through microservices and queue-based processing 2. **Modularity**: Clear separation of concerns with pluggable components 3. **Extensibility**: Easy to add new triggers, nodes, and integrations 4. **Reliability**: Fault tolerance, retries, and graceful degradation 5. **Performance**: Async processing, caching, and efficient resource usage ## System Components ### 1. API Gateway Layer - **Load Balancer**: Distributes traffic across API instances - **Authentication**: JWT-based auth with role-based access control - **Rate Limiting**: Per-user and per-IP rate limits - **Request Routing**: Routes to appropriate services ### 2. Trigger System #### Supported Trigger Types: - **Webhook Triggers** - Unique URLs per workflow - HMAC signature validation - Custom header validation - Request/response transformation - **Schedule Triggers** - Cron-based scheduling - Timezone support - Execution windows - Missed execution handling - **Event Triggers** - Real-time event bus (Redis Pub/Sub) - Event filtering and routing - Event replay capability - **Polling Triggers** - Configurable intervals - Change detection - Rate limiting - **Manual Triggers** - UI-based execution - API-based execution - Bulk execution support ### 3. Workflow Engine #### Core Components: - **Workflow Orchestrator** - Manages workflow lifecycle - Handles execution flow - Manages dependencies - Error handling and retries - **Workflow Executor** - Executes individual nodes - Manages parallel execution - Resource allocation - Performance monitoring - **State Manager** - Distributed state management (Redis) - Execution context persistence - Checkpoint and recovery - Real-time status updates ### 4. Node Types - **Agent Nodes**: AI-powered processing with multiple models - **Tool Nodes**: Integration with external services - **Transform Nodes**: Data manipulation and formatting - **Condition Nodes**: If/else and switch logic - **Loop Nodes**: For/while iterations - **Parallel Nodes**: Concurrent execution branches - **Webhook Nodes**: HTTP requests to external services - **Delay Nodes**: Time-based delays ### 5. Data Flow ``` Trigger → Queue → Orchestrator → Executor → Node → Output ↓ ↓ ↓ State Manager Tool Service Results ``` ### 6. Storage Architecture - **PostgreSQL**: Workflow definitions, configurations, audit logs - **Redis**: Execution state, queues, caching, pub/sub - **S3/Blob Storage**: Large files, logs, execution artifacts - **TimescaleDB**: Time-series data, metrics, analytics ### 7. Queue System - **RabbitMQ**: Task queuing, priority queues, dead letter queues - **Kafka**: Event streaming, audit trail, real-time analytics ## Execution Flow ### 1. Trigger Phase ```python 1. Trigger fires (webhook/schedule/event/etc) 2. Validate trigger configuration 3. Create ExecutionContext 4. Queue workflow for execution ``` ### 2. Orchestration Phase ```python 1. Load workflow definition 2. Build execution graph 3. Determine execution order 4. Initialize state management ``` ### 3. Execution Phase ```python 1. Execute nodes in topological order 2. Handle parallel branches 3. Manage data flow between nodes 4. Update execution state ``` ### 4. Completion Phase ```python 1. Aggregate results 2. Execute post-processing 3. Trigger downstream workflows 4. Clean up resources ``` ## Scalability Features ### Horizontal Scaling - Stateless API servers - Distributed queue workers - Shared state via Redis - Database read replicas ### Performance Optimization - Connection pooling - Result caching - Batch processing - Async I/O throughout ### Resource Management - Worker pool management - Memory limits per execution - CPU throttling - Concurrent execution limits ## Security ### Authentication & Authorization - JWT tokens with refresh - API key authentication - OAuth2 integration - Role-based permissions ### Data Security - Encryption at rest - TLS for all communications - Secret management (Vault) - Audit logging ### Webhook Security - HMAC signature validation - IP whitelisting - Rate limiting - Request size limits ## Monitoring & Observability ### Metrics - Prometheus metrics - Custom business metrics - Performance tracking - Resource utilization ### Logging - Structured logging - Centralized log aggregation - Log levels and filtering - Correlation IDs ### Tracing - Distributed tracing (OpenTelemetry) - LLM monitoring (Langfuse) - Execution visualization - Performance profiling ### Alerting - Error rate monitoring - SLA tracking - Resource alerts - Custom alerts ## Error Handling ### Retry Strategies - Exponential backoff - Circuit breakers - Dead letter queues - Manual retry options ### Failure Modes - Node-level failures - Workflow-level failures - System-level failures - Graceful degradation ## API Endpoints ### Workflow Management ``` POST /api/workflows # Create workflow GET /api/workflows/:id # Get workflow PUT /api/workflows/:id # Update workflow DELETE /api/workflows/:id # Delete workflow POST /api/workflows/:id/activate # Activate workflow POST /api/workflows/:id/pause # Pause workflow ``` ### Execution Management ``` POST /api/workflows/:id/execute # Manual execution GET /api/executions/:id # Get execution status POST /api/executions/:id/cancel # Cancel execution GET /api/executions/:id/logs # Get execution logs ``` ### Trigger Management ``` GET /api/workflows/:id/triggers # List triggers POST /api/workflows/:id/triggers # Add trigger PUT /api/triggers/:id # Update trigger DELETE /api/triggers/:id # Remove trigger ``` ### Webhook Endpoints ``` POST /webhooks/:path # Webhook receiver GET /api/webhooks # List webhooks ``` ## Database Schema ### Core Tables ```sql -- Workflows table CREATE TABLE workflows ( id UUID PRIMARY KEY, name VARCHAR(255), description TEXT, project_id UUID, status VARCHAR(50), definition JSONB, created_at TIMESTAMP, updated_at TIMESTAMP ); -- Workflow executions CREATE TABLE workflow_executions ( id UUID PRIMARY KEY, workflow_id UUID, status VARCHAR(50), started_at TIMESTAMP, completed_at TIMESTAMP, context JSONB, result JSONB, error TEXT ); -- Triggers CREATE TABLE triggers ( id UUID PRIMARY KEY, workflow_id UUID, type VARCHAR(50), config JSONB, is_active BOOLEAN ); -- Webhook registrations CREATE TABLE webhook_registrations ( id UUID PRIMARY KEY, workflow_id UUID, path VARCHAR(255) UNIQUE, secret VARCHAR(255), config JSONB ); ``` ## Deployment ### Docker Compose (Development) ```yaml services: api: build: . ports: - "8000:8000" depends_on: - postgres - redis - rabbitmq worker: build: . command: python -m workflow_engine.worker depends_on: - postgres - redis - rabbitmq scheduler: build: . command: python -m workflow_engine.scheduler depends_on: - postgres - redis ``` ### Kubernetes (Production) - Deployment manifests for each service - Horizontal Pod Autoscaling - Service mesh (Istio) - Persistent volume claims ## Future Enhancements 1. **Workflow Versioning**: Track and manage workflow versions 2. **A/B Testing**: Test different workflow variations 3. **Workflow Templates**: Pre-built workflow templates 4. **Advanced Analytics**: Detailed execution analytics 5. **Multi-tenancy**: Full isolation between projects 6. **Workflow Marketplace**: Share and monetize workflows 7. **Visual Debugging**: Step-through debugging 8. **Performance Optimization**: ML-based optimization