from tavily import AsyncTavilyClient import httpx from dotenv import load_dotenv from agentpress.tool import Tool, ToolResult, openapi_schema, usage_example from utils.config import config from sandbox.tool_base import SandboxToolsBase from agentpress.thread_manager import ThreadManager import json import os import datetime import asyncio import logging # TODO: add subpages, etc... in filters as sometimes its necessary class SandboxWebSearchTool(SandboxToolsBase): """Tool for performing web searches using Tavily API and web scraping using Firecrawl.""" def __init__(self, project_id: str, thread_manager: ThreadManager): super().__init__(project_id, thread_manager) # Load environment variables load_dotenv() # Use API keys from config self.tavily_api_key = config.TAVILY_API_KEY self.firecrawl_api_key = config.FIRECRAWL_API_KEY self.firecrawl_url = config.FIRECRAWL_URL if not self.tavily_api_key: raise ValueError("TAVILY_API_KEY not found in configuration") if not self.firecrawl_api_key: raise ValueError("FIRECRAWL_API_KEY not found in configuration") # Tavily asynchronous search client self.tavily_client = AsyncTavilyClient(api_key=self.tavily_api_key) @openapi_schema({ "type": "function", "function": { "name": "web_search", "description": "Search the web for up-to-date information on a specific topic using the Tavily API. This tool allows you to gather real-time information from the internet to answer user queries, research topics, validate facts, and find recent developments. Results include titles, URLs, and publication dates. Use this tool for discovering relevant web pages before potentially crawling them for complete content.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": "The search query to find relevant web pages. Be specific and include key terms to improve search accuracy. For best results, use natural language questions or keyword combinations that precisely describe what you're looking for." }, "num_results": { "type": "integer", "description": "The number of search results to return. Increase for more comprehensive research or decrease for focused, high-relevance results.", "default": 20 } }, "required": ["query"] } } }) @usage_example(''' what is Kortix AI and what are they building? 20 latest AI research on transformer models 20 ''') async def web_search( self, query: str, num_results: int = 20 ) -> ToolResult: """ Search the web using the Tavily API to find relevant and up-to-date information. """ try: # Ensure we have a valid query if not query or not isinstance(query, str): return self.fail_response("A valid search query is required.") # Normalize num_results if num_results is None: num_results = 20 elif isinstance(num_results, int): num_results = max(1, min(num_results, 50)) elif isinstance(num_results, str): try: num_results = max(1, min(int(num_results), 50)) except ValueError: num_results = 20 else: num_results = 20 # Execute the search with Tavily logging.info(f"Executing web search for query: '{query}' with {num_results} results") search_response = await self.tavily_client.search( query=query, max_results=num_results, include_images=True, include_answer="advanced", search_depth="advanced", ) # Check if we have actual results or an answer results = search_response.get('results', []) answer = search_response.get('answer', '') # Return the complete Tavily response # This includes the query, answer, results, images and more logging.info(f"Retrieved search results for query: '{query}' with answer and {len(results)} results") # Consider search successful if we have either results OR an answer if len(results) > 0 or (answer and answer.strip()): return ToolResult( success=True, output=json.dumps(search_response, ensure_ascii=False) ) else: # No results or answer found logging.warning(f"No search results or answer found for query: '{query}'") return ToolResult( success=False, output=json.dumps(search_response, ensure_ascii=False) ) except Exception as e: error_message = str(e) logging.error(f"Error performing web search for '{query}': {error_message}") simplified_message = f"Error performing web search: {error_message[:200]}" if len(error_message) > 200: simplified_message += "..." return self.fail_response(simplified_message) @openapi_schema({ "type": "function", "function": { "name": "scrape_webpage", "description": "Extract full text content from multiple webpages in a single operation. IMPORTANT: You should ALWAYS collect multiple relevant URLs from web-search results and scrape them all in a single call for efficiency. This tool saves time by processing multiple pages simultaneously rather than one at a time. The extracted text includes the main content of each page without HTML markup.", "parameters": { "type": "object", "properties": { "urls": { "type": "string", "description": "Multiple URLs to scrape, separated by commas. You should ALWAYS include several URLs when possible for efficiency. Example: 'https://example.com/page1,https://example.com/page2,https://example.com/page3'" } }, "required": ["urls"] } } }) @usage_example(''' https://www.kortix.ai/,https://github.com/kortix-ai/suna ''') async def scrape_webpage( self, urls: str ) -> ToolResult: """ Retrieve the complete text content of multiple webpages in a single efficient operation. ALWAYS collect multiple relevant URLs from search results and scrape them all at once rather than making separate calls for each URL. This is much more efficient. Parameters: - urls: Multiple URLs to scrape, separated by commas """ try: logging.info(f"Starting to scrape webpages: {urls}") # Ensure sandbox is initialized await self._ensure_sandbox() # Parse the URLs parameter if not urls: logging.warning("Scrape attempt with empty URLs") return self.fail_response("Valid URLs are required.") # Split the URLs string into a list url_list = [url.strip() for url in urls.split(',') if url.strip()] if not url_list: logging.warning("No valid URLs found in the input") return self.fail_response("No valid URLs provided.") if len(url_list) == 1: logging.warning("Only a single URL provided - for efficiency you should scrape multiple URLs at once") logging.info(f"Processing {len(url_list)} URLs: {url_list}") # Process each URL concurrently and collect results tasks = [self._scrape_single_url(url) for url in url_list] results = await asyncio.gather(*tasks, return_exceptions=True) # Process results, handling exceptions processed_results = [] for i, result in enumerate(results): if isinstance(result, Exception): logging.error(f"Error processing URL {url_list[i]}: {str(result)}") processed_results.append({ "url": url_list[i], "success": False, "error": str(result) }) else: processed_results.append(result) results = processed_results # Summarize results successful = sum(1 for r in results if r.get("success", False)) failed = len(results) - successful # Create success/failure message if successful == len(results): message = f"Successfully scraped all {len(results)} URLs. Results saved to:" for r in results: if r.get("file_path"): message += f"\n- {r.get('file_path')}" elif successful > 0: message = f"Scraped {successful} URLs successfully and {failed} failed. Results saved to:" for r in results: if r.get("success", False) and r.get("file_path"): message += f"\n- {r.get('file_path')}" message += "\n\nFailed URLs:" for r in results: if not r.get("success", False): message += f"\n- {r.get('url')}: {r.get('error', 'Unknown error')}" else: error_details = "; ".join([f"{r.get('url')}: {r.get('error', 'Unknown error')}" for r in results]) return self.fail_response(f"Failed to scrape all {len(results)} URLs. Errors: {error_details}") return ToolResult( success=True, output=message ) except Exception as e: error_message = str(e) logging.error(f"Error in scrape_webpage: {error_message}") return self.fail_response(f"Error processing scrape request: {error_message[:200]}") async def _scrape_single_url(self, url: str) -> dict: """ Helper function to scrape a single URL and return the result information. """ # # Add protocol if missing # if not (url.startswith('http://') or url.startswith('https://')): # url = 'https://' + url # logging.info(f"Added https:// protocol to URL: {url}") logging.info(f"Scraping single URL: {url}") try: # ---------- Firecrawl scrape endpoint ---------- logging.info(f"Sending request to Firecrawl for URL: {url}") async with httpx.AsyncClient() as client: headers = { "Authorization": f"Bearer {self.firecrawl_api_key}", "Content-Type": "application/json", } payload = { "url": url, "formats": ["markdown"] } # Use longer timeout and retry logic for more reliability max_retries = 3 timeout_seconds = 30 retry_count = 0 while retry_count < max_retries: try: logging.info(f"Sending request to Firecrawl (attempt {retry_count + 1}/{max_retries})") response = await client.post( f"{self.firecrawl_url}/v1/scrape", json=payload, headers=headers, timeout=timeout_seconds, ) response.raise_for_status() data = response.json() logging.info(f"Successfully received response from Firecrawl for {url}") break except (httpx.ReadTimeout, httpx.ConnectTimeout, httpx.ReadError) as timeout_err: retry_count += 1 logging.warning(f"Request timed out (attempt {retry_count}/{max_retries}): {str(timeout_err)}") if retry_count >= max_retries: raise Exception(f"Request timed out after {max_retries} attempts with {timeout_seconds}s timeout") # Exponential backoff logging.info(f"Waiting {2 ** retry_count}s before retry") await asyncio.sleep(2 ** retry_count) except Exception as e: # Don't retry on non-timeout errors logging.error(f"Error during scraping: {str(e)}") raise e # Format the response title = data.get("data", {}).get("metadata", {}).get("title", "") markdown_content = data.get("data", {}).get("markdown", "") logging.info(f"Extracted content from {url}: title='{title}', content length={len(markdown_content)}") formatted_result = { "title": title, "url": url, "text": markdown_content } # Add metadata if available if "metadata" in data.get("data", {}): formatted_result["metadata"] = data["data"]["metadata"] logging.info(f"Added metadata: {data['data']['metadata'].keys()}") # Create a simple filename from the URL domain and date timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") # Extract domain from URL for the filename from urllib.parse import urlparse parsed_url = urlparse(url) domain = parsed_url.netloc.replace("www.", "") # Clean up domain for filename domain = "".join([c if c.isalnum() else "_" for c in domain]) safe_filename = f"{timestamp}_{domain}.json" logging.info(f"Generated filename: {safe_filename}") # Save results to a file in the /workspace/scrape directory scrape_dir = f"{self.workspace_path}/scrape" await self.sandbox.fs.create_folder(scrape_dir, "755") results_file_path = f"{scrape_dir}/{safe_filename}" json_content = json.dumps(formatted_result, ensure_ascii=False, indent=2) logging.info(f"Saving content to file: {results_file_path}, size: {len(json_content)} bytes") await self.sandbox.fs.upload_file( json_content.encode(), results_file_path, ) return { "url": url, "success": True, "title": title, "file_path": results_file_path, "content_length": len(markdown_content) } except Exception as e: error_message = str(e) logging.error(f"Error scraping URL '{url}': {error_message}") # Create an error result return { "url": url, "success": False, "error": error_message } if __name__ == "__main__": async def test_web_search(): """Test function for the web search tool""" # This test function is not compatible with the sandbox version print("Test function needs to be updated for sandbox version") async def test_scrape_webpage(): """Test function for the webpage scrape tool""" # This test function is not compatible with the sandbox version print("Test function needs to be updated for sandbox version") async def run_tests(): """Run all test functions""" await test_web_search() await test_scrape_webpage() asyncio.run(run_tests())