import os import json import re from uuid import uuid4 from typing import Optional # from agent.tools.message_tool import MessageTool from agent.tools.message_tool import MessageTool from agent.tools.sb_deploy_tool import SandboxDeployTool from agent.tools.web_search_tool import WebSearchTool from dotenv import load_dotenv from agentpress.thread_manager import ThreadManager from agentpress.response_processor import ProcessorConfig from agent.tools.sb_shell_tool import SandboxShellTool from agent.tools.sb_files_tool import SandboxFilesTool from agent.tools.sb_browser_tool import SandboxBrowserTool from agent.tools.data_providers_tool import DataProvidersTool from agent.prompt import get_system_prompt from sandbox.sandbox import create_sandbox, get_or_start_sandbox from utils.billing import check_billing_status, get_account_id_from_thread load_dotenv() async def run_agent( thread_id: str, project_id: str, sandbox, stream: bool, thread_manager: Optional[ThreadManager] = None, native_max_auto_continues: int = 25, max_iterations: int = 150, model_name: str = "anthropic/claude-3-7-sonnet-latest", enable_thinking: Optional[bool] = False, reasoning_effort: Optional[str] = 'low', enable_context_manager: bool = True ): """Run the development agent with specified configuration.""" if not thread_manager: thread_manager = ThreadManager() client = await thread_manager.db.client # Get account ID from thread for billing checks account_id = await get_account_id_from_thread(client, thread_id) if not account_id: raise ValueError("Could not determine account ID for thread") # Note: Billing checks are now done in api.py before this function is called thread_manager.add_tool(SandboxShellTool, sandbox=sandbox) thread_manager.add_tool(SandboxFilesTool, sandbox=sandbox) thread_manager.add_tool(SandboxBrowserTool, sandbox=sandbox, thread_id=thread_id, thread_manager=thread_manager) thread_manager.add_tool(SandboxDeployTool, sandbox=sandbox) thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool if os.getenv("TAVILY_API_KEY"): thread_manager.add_tool(WebSearchTool) else: print("TAVILY_API_KEY not found, WebSearchTool will not be available.") if os.getenv("RAPID_API_KEY"): thread_manager.add_tool(DataProvidersTool) system_message = { "role": "system", "content": get_system_prompt() } iteration_count = 0 continue_execution = True while continue_execution and iteration_count < max_iterations: iteration_count += 1 print(f"Running iteration {iteration_count}...") # Billing check on each iteration - still needed within the iterations can_run, message, subscription = await check_billing_status(client, account_id) if not can_run: error_msg = f"Billing limit reached: {message}" # Yield a special message to indicate billing limit reached yield { "type": "status", "status": "stopped", "message": error_msg } break # Check if last message is from assistant using direct Supabase query latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).order('created_at', desc=True).limit(1).execute() if latest_message.data and len(latest_message.data) > 0: message_type = latest_message.data[0].get('type') if message_type == 'assistant': print(f"Last message was from assistant, stopping execution") continue_execution = False break # Get the latest message from messages table that its tpye is browser_state latest_browser_state = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute() temporary_message = None if latest_browser_state.data and len(latest_browser_state.data) > 0: try: content = json.loads(latest_browser_state.data[0]["content"]) screenshot_base64 = content["screenshot_base64"] # Create a copy of the browser state without screenshot browser_state = content.copy() browser_state.pop('screenshot_base64', None) browser_state.pop('screenshot_url', None) browser_state.pop('screenshot_url_base64', None) temporary_message = { "role": "user", "content": [] } if browser_state: temporary_message["content"].append({ "type": "text", "text": f"The following is the current state of the browser:\n{browser_state}" }) if screenshot_base64: temporary_message["content"].append({ "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{screenshot_base64}", } }) else: print("@@@@@ THIS TIME NO SCREENSHOT!!") except Exception as e: print(f"Error parsing browser state: {e}") # print(latest_browser_state.data[0]) max_tokens = 64000 if "sonnet" in model_name.lower() else None response = await thread_manager.run_thread( thread_id=thread_id, system_prompt=system_message, stream=stream, llm_model=model_name, llm_temperature=0, llm_max_tokens=max_tokens, tool_choice="auto", max_xml_tool_calls=1, temporary_message=temporary_message, processor_config=ProcessorConfig( xml_tool_calling=True, native_tool_calling=False, execute_tools=True, execute_on_stream=True, tool_execution_strategy="parallel", xml_adding_strategy="user_message" ), native_max_auto_continues=native_max_auto_continues, include_xml_examples=True, enable_thinking=enable_thinking, reasoning_effort=reasoning_effort, enable_context_manager=enable_context_manager ) if isinstance(response, dict) and "status" in response and response["status"] == "error": yield response break # Track if we see ask or complete tool calls last_tool_call = None async for chunk in response: # print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging # Check for XML versions like or in assistant content chunks if chunk.get('type') == 'assistant' and 'content' in chunk: try: # The content field might be a JSON string or object content = chunk.get('content', '{}') if isinstance(content, str): assistant_content_json = json.loads(content) else: assistant_content_json = content # The actual text content is nested within assistant_text = assistant_content_json.get('content', '') if isinstance(assistant_text, str): # Ensure it's a string # Check for the closing tags as they signal the end of the tool usage if '' in assistant_text or '' in assistant_text: xml_tool = 'ask' if '' in assistant_text else 'complete' last_tool_call = xml_tool print(f"Agent used XML tool: {xml_tool}") except json.JSONDecodeError: # Handle cases where content might not be valid JSON print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}") except Exception as e: print(f"Error processing assistant chunk: {e}") yield chunk # Check if we should stop based on the last tool call if last_tool_call in ['ask', 'complete']: print(f"Agent decided to stop with tool: {last_tool_call}") continue_execution = False # TESTING async def test_agent(): """Test function to run the agent with a sample query""" from agentpress.thread_manager import ThreadManager from services.supabase import DBConnection # Initialize ThreadManager thread_manager = ThreadManager() # Create a test thread directly with Postgres function client = await DBConnection().client try: # Get user's personal account account_result = await client.rpc('get_personal_account').execute() # if not account_result.data: # print("Error: No personal account found") # return account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59" if not account_id: print("Error: Could not get account ID") return # Find or create a test project in the user's account project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute() if project_result.data and len(project_result.data) > 0: # Use existing test project project_id = project_result.data[0]['project_id'] print(f"\nšŸ”„ Using existing test project: {project_id}") else: # Create new test project if none exists project_result = await client.table('projects').insert({ "name": "test11", "account_id": account_id }).execute() project_id = project_result.data[0]['project_id'] print(f"\n✨ Created new test project: {project_id}") # Create a thread for this project thread_result = await client.table('threads').insert({ 'project_id': project_id, 'account_id': account_id }).execute() thread_data = thread_result.data[0] if thread_result.data else None if not thread_data: print("Error: No thread data returned") return thread_id = thread_data['thread_id'] except Exception as e: print(f"Error setting up thread: {str(e)}") return print(f"\nšŸ¤– Agent Thread Created: {thread_id}\n") # Interactive message input loop while True: # Get user input user_message = input("\nšŸ’¬ Enter your message (or 'exit' to quit): ") if user_message.lower() == 'exit': break if not user_message.strip(): print("\nšŸ”„ Running agent...\n") await process_agent_response(thread_id, project_id, thread_manager) continue # Add the user message to the thread await thread_manager.add_message( thread_id=thread_id, type="user", content={ "role": "user", "content": user_message }, is_llm_message=True ) print("\nšŸ”„ Running agent...\n") await process_agent_response(thread_id, project_id, thread_manager) print("\nšŸ‘‹ Test completed. Goodbye!") async def process_agent_response( thread_id: str, project_id: str, thread_manager: ThreadManager, stream: bool = True, model_name: str = "anthropic/claude-3-7-sonnet-latest", enable_thinking: Optional[bool] = False, reasoning_effort: Optional[str] = 'low', enable_context_manager: bool = True ): """Process the streaming response from the agent.""" chunk_counter = 0 current_response = "" tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status # Create a test sandbox for processing sandbox_pass = str(uuid4()) sandbox = create_sandbox(sandbox_pass) print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m") async for chunk in run_agent( thread_id=thread_id, project_id=project_id, sandbox=sandbox, stream=stream, thread_manager=thread_manager, native_max_auto_continues=25, model_name=model_name, enable_thinking=enable_thinking, reasoning_effort=reasoning_effort, enable_context_manager=enable_context_manager ): chunk_counter += 1 # print(f"CHUNK: {chunk}") # Uncomment for debugging if chunk.get('type') == 'assistant': # Try parsing the content JSON try: # Handle content as string or object content = chunk.get('content', '{}') if isinstance(content, str): content_json = json.loads(content) else: content_json = content actual_content = content_json.get('content', '') # Print the actual assistant text content as it comes if actual_content: # Check if it contains XML tool tags, if so, print the whole tag for context if '<' in actual_content and '>' in actual_content: # Avoid printing potentially huge raw content if it's not just text if len(actual_content) < 500: # Heuristic limit print(actual_content, end='', flush=True) else: # Maybe just print a summary if it's too long or contains complex XML if '' in actual_content: print("...", end='', flush=True) elif '' in actual_content: print("...", end='', flush=True) else: print("...", end='', flush=True) # Generic case else: # Regular text content print(actual_content, end='', flush=True) current_response += actual_content # Accumulate only text part except json.JSONDecodeError: # If content is not JSON (e.g., just a string chunk), print directly raw_content = chunk.get('content', '') print(raw_content, end='', flush=True) current_response += raw_content except Exception as e: print(f"\nError processing assistant chunk: {e}\n") elif chunk.get('type') == 'tool': # Updated from 'tool_result' # Add timestamp and format tool result nicely tool_name = "UnknownTool" # Try to get from metadata if available result_content = "No content" # Parse metadata - handle both string and dict formats metadata = chunk.get('metadata', {}) if isinstance(metadata, str): try: metadata = json.loads(metadata) except json.JSONDecodeError: metadata = {} linked_assistant_msg_id = metadata.get('assistant_message_id') parsing_details = metadata.get('parsing_details') if parsing_details: tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details try: # Content is a JSON string or object content = chunk.get('content', '{}') if isinstance(content, str): content_json = json.loads(content) else: content_json = content # The actual tool result is nested inside content.content tool_result_str = content_json.get('content', '') # Extract the actual tool result string (remove outer tag if present) match = re.search(rf'<{tool_name}>(.*?)', tool_result_str, re.DOTALL) if match: result_content = match.group(1).strip() # Try to parse the result string itself as JSON for pretty printing try: result_obj = json.loads(result_content) result_content = json.dumps(result_obj, indent=2) except json.JSONDecodeError: # Keep as string if not JSON pass else: # Fallback if tag extraction fails result_content = tool_result_str except json.JSONDecodeError: result_content = chunk.get('content', 'Error parsing tool content') except Exception as e: result_content = f"Error processing tool chunk: {e}" print(f"\n\nšŸ› ļø TOOL RESULT [{tool_name}] → {result_content}") elif chunk.get('type') == 'status': # Log tool status changes try: # Handle content as string or object status_content = chunk.get('content', '{}') if isinstance(status_content, str): status_content = json.loads(status_content) status_type = status_content.get('status_type') function_name = status_content.get('function_name', '') xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available tool_name = xml_tag_name or function_name # Prefer XML tag name if status_type == 'tool_started' and tool_name: tool_usage_counter += 1 print(f"\nā³ TOOL STARTING #{tool_usage_counter} [{tool_name}]") print(" " + "-" * 40) # Return to the current content display if current_response: print("\nContinuing response:", flush=True) print(current_response, end='', flush=True) elif status_type == 'tool_completed' and tool_name: status_emoji = "āœ…" print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}") elif status_type == 'finish': finish_reason = status_content.get('finish_reason', '') if finish_reason: print(f"\nšŸ“Œ Finished: {finish_reason}") # else: # Print other status types if needed for debugging # print(f"\nā„¹ļø STATUS: {chunk.get('content')}") except json.JSONDecodeError: print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}") except Exception as e: print(f"\nError processing status chunk: {e}") # Removed elif chunk.get('type') == 'tool_call': block # Update final message print(f"\n\nāœ… Agent run completed with {tool_usage_counter} tool executions") if __name__ == "__main__": import asyncio # Configure any environment variables or setup needed for testing load_dotenv() # Ensure environment variables are loaded # Run the test function asyncio.run(test_agent())