suna/agentpress/thread_manager.py

515 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Conversation thread management system for AgentPress.
This module provides comprehensive conversation management, including:
- Thread creation and persistence
- Message handling with support for text and images
- Tool registration and execution
- LLM interaction with streaming support
- Error handling and cleanup
"""
import json
import logging
import os
import uuid
from typing import List, Dict, Any, Optional, Type, Union, AsyncGenerator
from agentpress.llm import make_llm_api_call
from agentpress.tool import Tool, ToolResult
from agentpress.tool_registry import ToolRegistry
from agentpress.llm_response_processor import LLMResponseProcessor
from agentpress.base_processors import ToolParserBase, ToolExecutorBase, ResultsAdderBase
from agentpress.xml_tool_parser import XMLToolParser
from agentpress.xml_tool_executor import XMLToolExecutor
from agentpress.xml_results_adder import XMLResultsAdder
from agentpress.standard_tool_parser import StandardToolParser
from agentpress.standard_tool_executor import StandardToolExecutor
from agentpress.standard_results_adder import StandardResultsAdder
class ThreadManager:
"""Manages conversation threads with LLM models and tool execution.
Provides comprehensive conversation management, handling message threading,
tool registration, and LLM interactions with support for both standard and
XML-based tool execution patterns.
Attributes:
threads_dir (str): Directory for storing thread files
tool_registry (ToolRegistry): Registry for managing available tools
Methods:
add_tool: Register a tool with optional function filtering
create_thread: Create a new conversation thread
add_message: Add a message to a thread
list_messages: Retrieve messages from a thread
run_thread: Execute a conversation thread with LLM
"""
def __init__(self, threads_dir: str = "threads"):
"""Initialize ThreadManager.
Args:
threads_dir: Directory to store thread files
Notes:
Creates the threads directory if it doesn't exist
"""
self.threads_dir = threads_dir
self.tool_registry = ToolRegistry()
os.makedirs(self.threads_dir, exist_ok=True)
def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
"""Add a tool to the ThreadManager.
Args:
tool_class: The tool class to register
function_names: Optional list of specific functions to register
**kwargs: Additional arguments passed to tool initialization
Notes:
- If function_names is None, all functions are registered
- Tool instances are created with provided kwargs
"""
self.tool_registry.register_tool(tool_class, function_names, **kwargs)
async def create_thread(self) -> str:
"""Create a new conversation thread.
Returns:
str: Unique thread ID for the created thread
Raises:
IOError: If thread file creation fails
Notes:
Creates a new thread file with an empty messages list
"""
thread_id = str(uuid.uuid4())
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": []}, f)
return thread_id
async def add_message(self, thread_id: str, message_data: Dict[str, Any], images: Optional[List[Dict[str, Any]]] = None):
"""Add a message to an existing thread.
Args:
thread_id: ID of the target thread
message_data: Message content and metadata
images: Optional list of image data dictionaries
Raises:
FileNotFoundError: If thread doesn't exist
Exception: For other operation failures
Notes:
- Handles cleanup of incomplete tool calls
- Supports both text and image content
- Converts ToolResult instances to strings
"""
logging.info(f"Adding message to thread {thread_id} with images: {images}")
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
# Handle cleanup of incomplete tool calls
if message_data['role'] == 'user':
last_assistant_index = next((i for i in reversed(range(len(messages)))
if messages[i]['role'] == 'assistant' and 'tool_calls' in messages[i]), None)
if last_assistant_index is not None:
tool_call_count = len(messages[last_assistant_index]['tool_calls'])
tool_response_count = sum(1 for msg in messages[last_assistant_index+1:]
if msg['role'] == 'tool')
if tool_call_count != tool_response_count:
await self.cleanup_incomplete_tool_calls(thread_id)
# Convert ToolResult instances to strings
for key, value in message_data.items():
if isinstance(value, ToolResult):
message_data[key] = str(value)
# Handle image attachments
if images:
if isinstance(message_data['content'], str):
message_data['content'] = [{"type": "text", "text": message_data['content']}]
elif not isinstance(message_data['content'], list):
message_data['content'] = []
for image in images:
image_content = {
"type": "image_url",
"image_url": {
"url": f"data:{image['content_type']};base64,{image['base64']}",
"detail": "high"
}
}
message_data['content'].append(image_content)
messages.append(message_data)
thread_data["messages"] = messages
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
logging.info(f"Message added to thread {thread_id}: {message_data}")
except Exception as e:
logging.error(f"Failed to add message to thread {thread_id}: {e}")
raise e
async def list_messages(
self,
thread_id: str,
hide_tool_msgs: bool = False,
only_latest_assistant: bool = False,
regular_list: bool = True
) -> List[Dict[str, Any]]:
"""Retrieve messages from a thread with optional filtering.
Args:
thread_id: ID of the thread to retrieve messages from
hide_tool_msgs: If True, excludes tool messages and tool calls
only_latest_assistant: If True, returns only the most recent assistant message
regular_list: If True, only includes standard message types
Returns:
List of messages matching the filter criteria
Notes:
- Returns empty list if thread doesn't exist
- Filters can be combined for different views of the conversation
"""
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
if only_latest_assistant:
for msg in reversed(messages):
if msg.get('role') == 'assistant':
return [msg]
return []
filtered_messages = messages
if hide_tool_msgs:
filtered_messages = [
{k: v for k, v in msg.items() if k != 'tool_calls'}
for msg in filtered_messages
if msg.get('role') != 'tool'
]
if regular_list:
filtered_messages = [
msg for msg in filtered_messages
if msg.get('role') in ['system', 'assistant', 'tool', 'user']
]
return filtered_messages
except FileNotFoundError:
return []
async def cleanup_incomplete_tool_calls(self, thread_id: str):
"""Clean up incomplete tool calls in a thread.
Args:
thread_id: ID of the thread to clean up
Returns:
bool: True if cleanup was performed, False otherwise
Notes:
- Adds failure results for incomplete tool calls
- Maintains thread consistency after interruptions
"""
messages = await self.list_messages(thread_id)
last_assistant_message = next((m for m in reversed(messages)
if m['role'] == 'assistant' and 'tool_calls' in m), None)
if last_assistant_message:
tool_calls = last_assistant_message.get('tool_calls', [])
tool_responses = [m for m in messages[messages.index(last_assistant_message)+1:]
if m['role'] == 'tool']
if len(tool_calls) != len(tool_responses):
failed_tool_results = []
for tool_call in tool_calls[len(tool_responses):]:
failed_tool_result = {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": tool_call['function']['name'],
"content": "ToolResult(success=False, output='Execution interrupted. Session was stopped.')"
}
failed_tool_results.append(failed_tool_result)
assistant_index = messages.index(last_assistant_message)
messages[assistant_index+1:assistant_index+1] = failed_tool_results
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": messages}, f)
return True
return False
async def run_thread(
self,
thread_id: str,
system_message: Dict[str, Any],
model_name: str,
temperature: float = 0,
max_tokens: Optional[int] = None,
tool_choice: str = "auto",
temporary_message: Optional[Dict[str, Any]] = None,
native_tool_calling: bool = False,
xml_tool_calling: bool = False,
execute_tools: bool = True,
stream: bool = False,
execute_tools_on_stream: bool = False,
parallel_tool_execution: bool = False,
tool_parser: Optional[ToolParserBase] = None,
tool_executor: Optional[ToolExecutorBase] = None,
results_adder: Optional[ResultsAdderBase] = None
) -> Union[Dict[str, Any], AsyncGenerator]:
"""Run a conversation thread with specified parameters.
Args:
thread_id: ID of the thread to run
system_message: System message for the conversation
model_name: Name of the LLM model to use
temperature: Model temperature (0-1)
max_tokens: Maximum tokens in response
tool_choice: Tool selection strategy ("auto" or "none")
temporary_message: Optional message to include temporarily
native_tool_calling: Whether to use native LLM function calling
xml_tool_calling: Whether to use XML-based tool calling
execute_tools: Whether to execute tool calls
stream: Whether to stream the response
execute_tools_on_stream: Whether to execute tools during streaming
parallel_tool_execution: Whether to execute tools in parallel
tool_parser: Custom tool parser implementation
tool_executor: Custom tool executor implementation
results_adder: Custom results adder implementation
Returns:
Union[Dict[str, Any], AsyncGenerator]: Response or stream
Raises:
ValueError: If incompatible tool calling options are specified
Exception: For other execution failures
Notes:
- Cannot use both native and XML tool calling simultaneously
- Streaming responses include both content and tool results
"""
# Validate tool calling configuration
if native_tool_calling and xml_tool_calling:
raise ValueError("Cannot use both native LLM tool calling and XML tool calling simultaneously")
# Initialize tool components if any tool calling is enabled
if native_tool_calling or xml_tool_calling:
if tool_parser is None:
tool_parser = XMLToolParser(tool_registry=self.tool_registry) if xml_tool_calling else StandardToolParser()
if tool_executor is None:
tool_executor = XMLToolExecutor(parallel=parallel_tool_execution, tool_registry=self.tool_registry) if xml_tool_calling else StandardToolExecutor(parallel=parallel_tool_execution)
if results_adder is None:
results_adder = XMLResultsAdder(self) if xml_tool_calling else StandardResultsAdder(self)
try:
messages = await self.list_messages(thread_id)
prepared_messages = [system_message] + messages
if temporary_message:
prepared_messages.append(temporary_message)
openapi_tool_schemas = None
if native_tool_calling:
openapi_tool_schemas = self.tool_registry.get_openapi_schemas()
available_functions = self.tool_registry.get_available_functions()
elif xml_tool_calling:
available_functions = self.tool_registry.get_available_functions()
else:
available_functions = {}
response_processor = LLMResponseProcessor(
thread_id=thread_id,
available_functions=available_functions,
add_message_callback=self.add_message,
update_message_callback=self._update_message,
list_messages_callback=self.list_messages,
parallel_tool_execution=parallel_tool_execution,
threads_dir=self.threads_dir,
tool_parser=tool_parser,
tool_executor=tool_executor,
results_adder=results_adder
)
llm_response = await self._run_thread_completion(
messages=prepared_messages,
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
tools=openapi_tool_schemas,
tool_choice=tool_choice if native_tool_calling else None,
stream=stream
)
if stream:
return response_processor.process_stream(
response_stream=llm_response,
execute_tools=execute_tools,
execute_tools_on_stream=execute_tools_on_stream
)
await response_processor.process_response(
response=llm_response,
execute_tools=execute_tools
)
return llm_response
except Exception as e:
logging.error(f"Error in run_thread: {str(e)}")
return {
"status": "error",
"message": str(e)
}
async def _run_thread_completion(
self,
messages: List[Dict[str, Any]],
model_name: str,
temperature: float,
max_tokens: Optional[int],
tools: Optional[List[Dict[str, Any]]],
tool_choice: Optional[str],
stream: bool
) -> Union[Any, AsyncGenerator]:
"""Get completion from LLM API."""
return await make_llm_api_call(
messages,
model_name,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
tool_choice=tool_choice,
stream=stream
)
async def _update_message(self, thread_id: str, message: Dict[str, Any]):
"""Update an existing message in the thread."""
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
# Find and update the last assistant message
for i in reversed(range(len(thread_data["messages"]))):
if thread_data["messages"][i]["role"] == "assistant":
thread_data["messages"][i] = message
break
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
except Exception as e:
logging.error(f"Error updating message in thread {thread_id}: {e}")
raise e
if __name__ == "__main__":
import asyncio
from agentpress.examples.example_agent.tools.files_tool import FilesTool
async def main():
# Initialize managers
thread_manager = ThreadManager()
# Register available tools
thread_manager.add_tool(FilesTool)
# Create a new thread
thread_id = await thread_manager.create_thread()
# Add a test message
await thread_manager.add_message(thread_id, {
"role": "user",
"content": "Please create 10x files Each should be a chapter of a book about an Introduction to Robotics.."
})
# Define system message
system_message = {
"role": "system",
"content": "You are a helpful assistant that can create, read, update, and delete files."
}
# Test with streaming response and tool execution
print("\n🤖 Testing streaming response with tools:")
response = await thread_manager.run_thread(
thread_id=thread_id,
system_message=system_message,
model_name="anthropic/claude-3-5-haiku-latest",
temperature=0.7,
max_tokens=4096,
stream=True,
native_tool_calling=True,
execute_tools=True,
execute_tools_on_stream=True,
parallel_tool_execution=True
)
# Handle streaming response
if isinstance(response, AsyncGenerator):
print("\nAssistant is responding:")
content_buffer = ""
try:
async for chunk in response:
if hasattr(chunk.choices[0], 'delta'):
delta = chunk.choices[0].delta
# Handle content streaming
if hasattr(delta, 'content') and delta.content is not None:
content_buffer += delta.content
if delta.content.endswith((' ', '\n')):
print(content_buffer, end='', flush=True)
content_buffer = ""
# Handle tool calls
if hasattr(delta, 'tool_calls') and delta.tool_calls:
for tool_call in delta.tool_calls:
# Print tool name when it first appears
if tool_call.function and tool_call.function.name:
print(f"\n🛠️ Tool Call: {tool_call.function.name}", flush=True)
# Print arguments as they stream in
if tool_call.function and tool_call.function.arguments:
print(f" {tool_call.function.arguments}", end='', flush=True)
# Print any remaining content
if content_buffer:
print(content_buffer, flush=True)
print("\n✨ Response completed\n")
except Exception as e:
print(f"\n❌ Error processing stream: {e}")
else:
print("\n✨ Response completed\n")
# Display final thread state
messages = await thread_manager.list_messages(thread_id)
print("\n📝 Final Thread State:")
for msg in messages:
role = msg.get('role', 'unknown')
content = msg.get('content', '')
print(f"\n{role.upper()}: {content[:100]}...")
asyncio.run(main())