suna/agentpress/thread_manager.py

445 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import logging
import asyncio
import os
from typing import List, Dict, Any, Optional, Type, Union, AsyncGenerator
from agentpress.llm import make_llm_api_call
from agentpress.tool import Tool, ToolResult
from agentpress.tool_registry import ToolRegistry
from agentpress.tool_parser import ToolParser, StandardToolParser
from agentpress.tool_executor import ToolExecutor
from agentpress.response_processor import LLMResponseProcessor
import uuid
class ThreadManager:
"""
Manages conversation threads with LLM models and tool execution.
The ThreadManager handles:
- Creating and managing conversation threads
- Adding/retrieving messages in threads
- Executing LLM calls with optional tool usage
- Managing tool registration and execution
- Supporting both streaming and non-streaming responses
Attributes:
threads_dir (str): Directory where thread files are stored
tool_registry (ToolRegistry): Registry for managing available tools
tool_parser (ToolParser): Parser for handling tool calls/responses
tool_executor (ToolExecutor): Executor for running tool functions
"""
def __init__(
self,
threads_dir: str = "threads",
tool_parser: Optional[ToolParser] = None,
tool_executor: Optional[ToolExecutor] = None
):
"""Initialize ThreadManager with optional custom tool parser and executor.
Args:
threads_dir (str): Directory to store thread files
tool_parser (Optional[ToolParser]): Custom tool parser implementation
tool_executor (Optional[ToolExecutor]): Custom tool executor implementation
"""
self.threads_dir = threads_dir
self.tool_registry = ToolRegistry()
self.tool_parser = tool_parser or StandardToolParser()
self.tool_executor = tool_executor or ToolExecutor(parallel=True)
os.makedirs(self.threads_dir, exist_ok=True)
def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
"""
Add a tool to the ThreadManager.
If function_names is provided, only register those specific functions.
If function_names is None, register all functions from the tool.
Args:
tool_class: The tool class to register
function_names: Optional list of function names to register
**kwargs: Additional keyword arguments passed to tool initialization
"""
self.tool_registry.register_tool(tool_class, function_names, **kwargs)
async def create_thread(self) -> str:
"""
Create a new conversation thread.
Returns:
str: Unique thread ID for the created thread
"""
thread_id = str(uuid.uuid4())
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": []}, f)
return thread_id
async def add_message(self, thread_id: str, message_data: Dict[str, Any], images: Optional[List[Dict[str, Any]]] = None):
"""
Add a message to an existing thread.
Args:
thread_id (str): ID of the thread to add message to
message_data (Dict[str, Any]): Message data including role and content
images (Optional[List[Dict[str, Any]]]): List of image data to include
Each image dict should contain 'content_type' and 'base64' keys
Raises:
Exception: If message addition fails
"""
logging.info(f"Adding message to thread {thread_id} with images: {images}")
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
if message_data['role'] == 'user':
last_assistant_index = next((i for i in reversed(range(len(messages))) if messages[i]['role'] == 'assistant' and 'tool_calls' in messages[i]), None)
if last_assistant_index is not None:
tool_call_count = len(messages[last_assistant_index]['tool_calls'])
tool_response_count = sum(1 for msg in messages[last_assistant_index+1:] if msg['role'] == 'tool')
if tool_call_count != tool_response_count:
await self.cleanup_incomplete_tool_calls(thread_id)
for key, value in message_data.items():
if isinstance(value, ToolResult):
message_data[key] = str(value)
if images:
if isinstance(message_data['content'], str):
message_data['content'] = [{"type": "text", "text": message_data['content']}]
elif not isinstance(message_data['content'], list):
message_data['content'] = []
for image in images:
image_content = {
"type": "image_url",
"image_url": {
"url": f"data:{image['content_type']};base64,{image['base64']}",
"detail": "high"
}
}
message_data['content'].append(image_content)
messages.append(message_data)
thread_data["messages"] = messages
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
logging.info(f"Message added to thread {thread_id}: {message_data}")
except Exception as e:
logging.error(f"Failed to add message to thread {thread_id}: {e}")
raise e
async def list_messages(self, thread_id: str, hide_tool_msgs: bool = False, only_latest_assistant: bool = False, regular_list: bool = True) -> List[Dict[str, Any]]:
"""
Retrieve messages from a thread with optional filtering.
Args:
thread_id (str): ID of the thread to retrieve messages from
hide_tool_msgs (bool): If True, excludes tool messages and tool calls
only_latest_assistant (bool): If True, returns only the most recent assistant message
regular_list (bool): If True, only includes standard message types
Returns:
List[Dict[str, Any]]: List of messages matching the filter criteria
"""
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
messages = thread_data["messages"]
if only_latest_assistant:
for msg in reversed(messages):
if msg.get('role') == 'assistant':
return [msg]
return []
filtered_messages = messages
if hide_tool_msgs:
filtered_messages = [
{k: v for k, v in msg.items() if k != 'tool_calls'}
for msg in filtered_messages
if msg.get('role') != 'tool'
]
if regular_list:
filtered_messages = [
msg for msg in filtered_messages
if msg.get('role') in ['system', 'assistant', 'tool', 'user']
]
return filtered_messages
except FileNotFoundError:
return []
async def cleanup_incomplete_tool_calls(self, thread_id: str):
messages = await self.list_messages(thread_id)
last_assistant_message = next((m for m in reversed(messages) if m['role'] == 'assistant' and 'tool_calls' in m), None)
if last_assistant_message:
tool_calls = last_assistant_message.get('tool_calls', [])
tool_responses = [m for m in messages[messages.index(last_assistant_message)+1:] if m['role'] == 'tool']
if len(tool_calls) != len(tool_responses):
failed_tool_results = []
for tool_call in tool_calls[len(tool_responses):]:
failed_tool_result = {
"role": "tool",
"tool_call_id": tool_call['id'],
"name": tool_call['function']['name'],
"content": "ToolResult(success=False, output='Execution interrupted. Session was stopped.')"
}
failed_tool_results.append(failed_tool_result)
assistant_index = messages.index(last_assistant_message)
messages[assistant_index+1:assistant_index+1] = failed_tool_results
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
with open(thread_path, 'w') as f:
json.dump({"messages": messages}, f)
return True
return False
async def run_thread(
self,
thread_id: str,
system_message: Dict[str, Any],
model_name: str,
temperature: float = 0,
max_tokens: Optional[int] = None,
tool_choice: str = "auto",
temporary_message: Optional[Dict[str, Any]] = None,
use_tools: bool = False,
execute_tools: bool = True,
stream: bool = False,
immediate_tool_execution: bool = True,
parallel_tool_execution: bool = True
) -> Union[Dict[str, Any], AsyncGenerator]:
"""
Run a conversation thread with the specified parameters.
Args:
thread_id: ID of the thread to run
system_message: System message to guide model behavior
model_name: Name of the LLM model to use
temperature: Sampling temperature for model responses
max_tokens: Maximum tokens in model response
tool_choice: How tools should be selected ('auto' or 'none')
temporary_message: Extra temporary message for LLM request
use_tools: Whether to enable tool usage
execute_tools: Whether to execute tool calls at all
stream: Whether to stream the response
immediate_tool_execution: Execute tools as they appear in stream
parallel_tool_execution: Execute tools in parallel (True) or sequence (False)
"""
messages = await self.list_messages(thread_id)
prepared_messages = [system_message] + messages
if temporary_message:
prepared_messages.append(temporary_message)
tools = self.tool_registry.get_all_tool_schemas() if use_tools else None
available_functions = self.tool_registry.get_available_functions() if use_tools else {}
try:
# Configure executor based on parallel_tool_execution
self.tool_executor.parallel = parallel_tool_execution
response_handler = LLMResponseProcessor(
thread_id=thread_id,
tool_executor=self.tool_executor,
tool_parser=self.tool_parser,
available_functions=available_functions,
add_message_callback=self.add_message,
update_message_callback=self._update_message
)
llm_response = await make_llm_api_call(
prepared_messages,
model_name,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
tool_choice=tool_choice if use_tools else None,
stream=stream
)
if stream:
return response_handler.process_stream(
response_stream=llm_response,
execute_tools=execute_tools,
immediate_execution=immediate_tool_execution
)
await response_handler.process_response(
response=llm_response,
execute_tools=execute_tools
)
return {
"llm_response": llm_response,
"run_thread_params": {
"thread_id": thread_id,
"system_message": system_message,
"model_name": model_name,
"temperature": temperature,
"max_tokens": max_tokens,
"tool_choice": tool_choice,
"temporary_message": temporary_message,
"execute_tools": execute_tools,
"use_tools": use_tools,
"stream": stream,
"immediate_tool_execution": immediate_tool_execution,
"parallel_tool_execution": parallel_tool_execution
}
}
except Exception as e:
logging.error(f"Error in API call: {str(e)}")
return {
"status": "error",
"message": str(e),
"run_thread_params": {
"thread_id": thread_id,
"system_message": system_message,
"model_name": model_name,
"temperature": temperature,
"max_tokens": max_tokens,
"tool_choice": tool_choice,
"temporary_message": temporary_message,
"execute_tools": execute_tools,
"use_tools": use_tools,
"stream": stream,
"immediate_tool_execution": immediate_tool_execution,
"parallel_tool_execution": parallel_tool_execution
}
}
async def _update_message(self, thread_id: str, message: Dict[str, Any]):
"""Update an existing message in the thread."""
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
try:
with open(thread_path, 'r') as f:
thread_data = json.load(f)
# Find and update the last assistant message
for i in reversed(range(len(thread_data["messages"]))):
if thread_data["messages"][i]["role"] == "assistant":
thread_data["messages"][i] = message
break
with open(thread_path, 'w') as f:
json.dump(thread_data, f)
except Exception as e:
logging.error(f"Error updating message in thread {thread_id}: {e}")
raise e
if __name__ == "__main__":
import asyncio
from agentpress.examples.example_agent.tools.files_tool import FilesTool
async def main():
# Initialize managers
thread_manager = ThreadManager()
# Register available tools
thread_manager.add_tool(FilesTool)
# Create a new thread
thread_id = await thread_manager.create_thread()
# Add a test message
await thread_manager.add_message(thread_id, {
"role": "user",
"content": "Please create 10x files Each should be a chapter of a book about an Introduction to Robotics.."
})
# Define system message
system_message = {
"role": "system",
"content": "You are a helpful assistant that can create, read, update, and delete files."
}
# Test with streaming response and tool execution
print("\n🤖 Testing streaming response with tools:")
response = await thread_manager.run_thread(
thread_id=thread_id,
system_message=system_message,
model_name="anthropic/claude-3-5-haiku-latest",
temperature=0.7,
max_tokens=4096,
stream=True,
use_tools=True,
execute_tools=True,
immediate_tool_execution=True,
parallel_tool_execution=False
)
# Handle streaming response
if isinstance(response, AsyncGenerator):
print("\nAssistant is responding:")
content_buffer = ""
try:
async for chunk in response:
if hasattr(chunk.choices[0], 'delta'):
delta = chunk.choices[0].delta
# Handle content streaming
if hasattr(delta, 'content') and delta.content is not None:
content_buffer += delta.content
if delta.content.endswith((' ', '\n')):
print(content_buffer, end='', flush=True)
content_buffer = ""
# Handle tool calls
if hasattr(delta, 'tool_calls') and delta.tool_calls:
for tool_call in delta.tool_calls:
# Print tool name when it first appears
if tool_call.function and tool_call.function.name:
print(f"\n🛠️ Tool Call: {tool_call.function.name}", flush=True)
# Print arguments as they stream in
if tool_call.function and tool_call.function.arguments:
print(f" {tool_call.function.arguments}", end='', flush=True)
# Print any remaining content
if content_buffer:
print(content_buffer, flush=True)
print("\n✨ Response completed\n")
except Exception as e:
print(f"\n❌ Error processing stream: {e}")
else:
# Handle non-streaming response
print("\nAssistant response:")
if hasattr(response.choices[0], 'message'):
message = response.choices[0].message
if message.content:
print(message.content)
if hasattr(message, 'tool_calls') and message.tool_calls:
for tool_call in message.tool_calls:
print(f"\n🛠️ Tool Call: {tool_call.function.name}")
print(f" Arguments: {tool_call.function.arguments}")
print("\n✨ Response completed\n")
# Display final thread state
messages = await thread_manager.list_messages(thread_id)
print("\n📝 Final Thread State:")
for msg in messages:
role = msg.get('role', 'unknown')
content = msg.get('content', '')
print(f"\n{role.upper()}: {content[:100]}...")
asyncio.run(main())