mirror of https://github.com/kortix-ai/suna.git
165 lines
6.6 KiB
Python
165 lines
6.6 KiB
Python
from typing import Optional
|
|
from agentpress.tool import ToolResult, openapi_schema, usage_example
|
|
from sandbox.tool_base import SandboxToolsBase
|
|
from agentpress.thread_manager import ThreadManager
|
|
import httpx
|
|
from io import BytesIO
|
|
import uuid
|
|
from litellm import aimage_generation, aimage_edit
|
|
import base64
|
|
|
|
|
|
class SandboxImageEditTool(SandboxToolsBase):
|
|
"""Tool for generating or editing images using OpenAI GPT Image 1 via OpenAI SDK (no mask support)."""
|
|
|
|
def __init__(self, project_id: str, thread_id: str, thread_manager: ThreadManager):
|
|
super().__init__(project_id, thread_manager)
|
|
self.thread_id = thread_id
|
|
self.thread_manager = thread_manager
|
|
|
|
@openapi_schema(
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "image_edit_or_generate",
|
|
"description": "Generate a new image from a prompt, or edit an existing image (no mask support) using OpenAI GPT Image 1 via OpenAI SDK. Stores the result in the thread context.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"mode": {
|
|
"type": "string",
|
|
"enum": ["generate", "edit"],
|
|
"description": "'generate' to create a new image from a prompt, 'edit' to edit an existing image.",
|
|
},
|
|
"prompt": {
|
|
"type": "string",
|
|
"description": "Text prompt describing the desired image or edit.",
|
|
},
|
|
"image_path": {
|
|
"type": "string",
|
|
"description": "(edit mode only) Path to the image file to edit, relative to /workspace. Required for 'edit'.",
|
|
},
|
|
},
|
|
"required": ["mode", "prompt"],
|
|
},
|
|
},
|
|
}
|
|
)
|
|
@usage_example("""
|
|
<function_calls>
|
|
<invoke name="image_edit_or_generate">
|
|
<parameter name="mode">generate</parameter>
|
|
<parameter name="prompt">A futuristic cityscape at sunset</parameter>
|
|
</invoke>
|
|
</function_calls>
|
|
""")
|
|
async def image_edit_or_generate(
|
|
self,
|
|
mode: str,
|
|
prompt: str,
|
|
image_path: Optional[str] = None,
|
|
) -> ToolResult:
|
|
"""Generate or edit images using OpenAI GPT Image 1 via OpenAI SDK (no mask support)."""
|
|
try:
|
|
await self._ensure_sandbox()
|
|
|
|
if mode == "generate":
|
|
response = await aimage_generation(
|
|
model="gpt-image-1",
|
|
prompt=prompt,
|
|
n=1,
|
|
size="1024x1024",
|
|
)
|
|
elif mode == "edit":
|
|
if not image_path:
|
|
return self.fail_response("'image_path' is required for edit mode.")
|
|
|
|
image_bytes = await self._get_image_bytes(image_path)
|
|
if isinstance(image_bytes, ToolResult): # Error occurred
|
|
return image_bytes
|
|
|
|
# Create BytesIO object with proper filename to set MIME type
|
|
image_io = BytesIO(image_bytes)
|
|
image_io.name = (
|
|
"image.png" # Set filename to ensure proper MIME type detection
|
|
)
|
|
|
|
response = await aimage_edit(
|
|
image=[image_io], # Type in the LiteLLM SDK is wrong
|
|
prompt=prompt,
|
|
model="gpt-image-1",
|
|
n=1,
|
|
size="1024x1024",
|
|
)
|
|
else:
|
|
return self.fail_response("Invalid mode. Use 'generate' or 'edit'.")
|
|
|
|
# Download and save the generated image to sandbox
|
|
image_filename = await self._process_image_response(response)
|
|
if isinstance(image_filename, ToolResult): # Error occurred
|
|
return image_filename
|
|
|
|
return self.success_response(
|
|
f"Successfully generated image using mode '{mode}'. Image saved as: {image_filename}. You can use the ask tool to display the image."
|
|
)
|
|
|
|
except Exception as e:
|
|
return self.fail_response(
|
|
f"An error occurred during image generation/editing: {str(e)}"
|
|
)
|
|
|
|
async def _get_image_bytes(self, image_path: str) -> bytes | ToolResult:
|
|
"""Get image bytes from URL or local file path."""
|
|
if image_path.startswith(("http://", "https://")):
|
|
return await self._download_image_from_url(image_path)
|
|
else:
|
|
return await self._read_image_from_sandbox(image_path)
|
|
|
|
async def _download_image_from_url(self, url: str) -> bytes | ToolResult:
|
|
"""Download image from URL."""
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.get(url)
|
|
response.raise_for_status()
|
|
return response.content
|
|
except Exception:
|
|
return self.fail_response(f"Could not download image from URL: {url}")
|
|
|
|
async def _read_image_from_sandbox(self, image_path: str) -> bytes | ToolResult:
|
|
"""Read image from sandbox filesystem."""
|
|
try:
|
|
cleaned_path = self.clean_path(image_path)
|
|
full_path = f"{self.workspace_path}/{cleaned_path}"
|
|
|
|
# Check if file exists and is not a directory
|
|
file_info = await self.sandbox.fs.get_file_info(full_path)
|
|
if file_info.is_dir:
|
|
return self.fail_response(
|
|
f"Path '{cleaned_path}' is a directory, not an image file."
|
|
)
|
|
|
|
return await self.sandbox.fs.download_file(full_path)
|
|
|
|
except Exception as e:
|
|
return self.fail_response(
|
|
f"Could not read image file from sandbox: {image_path} - {str(e)}"
|
|
)
|
|
|
|
async def _process_image_response(self, response) -> str | ToolResult:
|
|
"""Download generated image and save to sandbox with random name."""
|
|
try:
|
|
original_b64_str = response.data[0].b64_json
|
|
# Decode base64 image data
|
|
image_data = base64.b64decode(original_b64_str)
|
|
|
|
# Generate random filename
|
|
random_filename = f"generated_image_{uuid.uuid4().hex[:8]}.png"
|
|
sandbox_path = f"{self.workspace_path}/{random_filename}"
|
|
|
|
# Save image to sandbox
|
|
await self.sandbox.fs.upload_file(image_data, sandbox_path)
|
|
return random_filename
|
|
|
|
except Exception as e:
|
|
return self.fail_response(f"Failed to download and save image: {str(e)}")
|