suna/backend/agent/run.py

300 lines
13 KiB
Python

import json
from uuid import uuid4
from typing import Optional
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.web_search_tool import WebSearchTool
from dotenv import load_dotenv
from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.prompt import get_system_prompt
from sandbox.sandbox import daytona, create_sandbox, get_or_start_sandbox
load_dotenv()
async def run_agent(thread_id: str, project_id: str, stream: bool = True, thread_manager: Optional[ThreadManager] = None, native_max_auto_continues: int = 25, max_iterations: int = 150):
"""Run the development agent with specified configuration."""
if not thread_manager:
thread_manager = ThreadManager()
client = await thread_manager.db.client
## probably want to move to api.py
project = await client.table('projects').select('*').eq('project_id', project_id).execute()
if project.data and project.data[0]['sandbox_id'] is not None:
sandbox_id = project.data[0]['sandbox_id']
sandbox_pass = project.data[0]['sandbox_pass']
sandbox = await get_or_start_sandbox(sandbox_id)
else:
sandbox_pass = str(uuid4())
sandbox = create_sandbox(sandbox_pass)
sandbox_id = sandbox.id
await client.table('projects').update({
'sandbox_id': sandbox_id,
'sandbox_pass': sandbox_pass
}).eq('project_id', project_id).execute()
thread_manager.add_tool(SandboxShellTool, sandbox_id=sandbox_id, password=sandbox_pass)
thread_manager.add_tool(SandboxFilesTool, sandbox_id=sandbox_id, password=sandbox_pass)
thread_manager.add_tool(WebSearchTool)
thread_manager.add_tool(MessageTool)
thread_manager.add_tool(SandboxDeployTool, sandbox_id=sandbox_id, password=sandbox_pass)
system_message = { "role": "system", "content": get_system_prompt() }
model_name = "anthropic/claude-3-7-sonnet-latest"
# model_name = "groq/llama-3.3-70b-versatile"
# model_name = "openrouter/qwen/qwen2.5-vl-72b-instruct"
# model_name = "bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0"
# model_name = "anthropic/claude-3-5-sonnet-latest"
# model_name = "anthropic/claude-3-7-sonnet-latest"
# model_name = "openai/gpt-4o"
# model_name = "groq/deepseek-r1-distill-llama-70b"
# model_name = "bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0"
# model_name = "bedrock/anthropic.claude-3-7-sonnet-20250219-v1:0"
# model_name = "bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0"
iteration_count = 0
continue_execution = True
while continue_execution and iteration_count < max_iterations:
iteration_count += 1
print(f"Running iteration {iteration_count}...")
# Check if last message is from assistant using direct Supabase query
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).order('created_at', desc=True).limit(1).execute()
if latest_message.data and len(latest_message.data) > 0:
message_type = latest_message.data[0].get('type')
if message_type == 'assistant':
print(f"Last message was from assistant, stopping execution")
continue_execution = False
break
# files_tool = SandboxFilesTool(sandbox_id=sandbox_id, password=sandbox_pass)
# files_state = await files_tool.get_workspace_state()
# # Simple string representation
# state_str = str(files_state)
# state_message = {
# "role": "user",
# "content": f"""
# Current workspace state:
# <current_workspace_state>
# {state_str}
# </current_workspace_state>
# """
# }
# print(f"State message: {state_message}")
response = await thread_manager.run_thread(
thread_id=thread_id,
system_prompt=system_message,
stream=stream,
# temporary_message=state_message,
llm_model=model_name,
llm_temperature=0,
# llm_max_tokens=64000,
llm_max_tokens=32768,
tool_choice="auto",
max_xml_tool_calls=1,
processor_config=ProcessorConfig(
xml_tool_calling=True,
native_tool_calling=False,
execute_tools=True,
execute_on_stream=True,
tool_execution_strategy="parallel",
xml_adding_strategy="user_message"
),
native_max_auto_continues=native_max_auto_continues,
include_xml_examples=True,
)
if isinstance(response, dict) and "status" in response and response["status"] == "error":
yield response
break
# Track if we see ask or complete tool calls
last_tool_call = None
async for chunk in response:
# Check if this is a tool call chunk for ask or complete
if chunk.get('type') == 'tool_call':
tool_call = chunk.get('tool_call', {})
function_name = tool_call.get('function', {}).get('name', '')
if function_name in ['ask', 'complete']:
last_tool_call = function_name
# Check for XML versions like <ask> or <complete> in content chunks
elif chunk.get('type') == 'content' and 'content' in chunk:
content = chunk.get('content', '')
if '</ask>' in content or '</complete>' in content:
xml_tool = 'ask' if '</ask>' in content else 'complete'
last_tool_call = xml_tool
print(f"Agent used XML tool: {xml_tool}")
yield chunk
# Check if we should stop based on the last tool call
if last_tool_call in ['ask', 'complete']:
print(f"Agent decided to stop with tool: {last_tool_call}")
continue_execution = False
# TESTING
async def test_agent():
"""Test function to run the agent with a sample query"""
from agentpress.thread_manager import ThreadManager
from services.supabase import DBConnection
# Initialize ThreadManager
thread_manager = ThreadManager()
# Create a test thread directly with Postgres function
client = await DBConnection().client
try:
project_result = await client.table('projects').select('*').eq('name', 'test11').eq('user_id', '68e1da55-0749-49db-937a-ff56bf0269a0').execute()
if project_result.data and len(project_result.data) > 0:
# Use existing test project
project_id = project_result.data[0]['project_id']
print(f"\n🔄 Using existing test project: {project_id}")
else:
# Create new test project if none exists
project_result = await client.table('projects').insert({"name": "test11", "user_id": "68e1da55-0749-49db-937a-ff56bf0269a0"}).execute()
project_id = project_result.data[0]['project_id']
print(f"\n✨ Created new test project: {project_id}")
thread_result = await client.table('threads').insert({'project_id': project_id}).execute()
thread_data = thread_result.data[0] if thread_result.data else None
if not thread_data:
print("Error: No thread data returned")
return
thread_id = thread_data['thread_id']
except Exception as e:
print(f"Error setting up thread: {str(e)}")
return
print(f"\n🤖 Agent Thread Created: {thread_id}\n")
# Interactive message input loop
while True:
# Get user input
user_message = input("\n💬 Enter your message (or 'exit' to quit): ")
if user_message.lower() == 'exit':
break
if not user_message.strip():
print("\n🔄 Running agent...\n")
await process_agent_response(thread_id, project_id, thread_manager)
continue
# Add the user message to the thread
await thread_manager.add_message(
thread_id=thread_id,
type="user",
content={
"role": "user",
"content": user_message
},
is_llm_message=True
)
print("\n🔄 Running agent...\n")
await process_agent_response(thread_id, project_id, thread_manager)
print("\n👋 Test completed. Goodbye!")
async def process_agent_response(thread_id: str, project_id: str, thread_manager: ThreadManager):
"""Process the streaming response from the agent."""
chunk_counter = 0
current_response = ""
tool_call_counter = 0 # Track number of tool calls
async for chunk in run_agent(thread_id=thread_id, project_id=project_id, stream=True, thread_manager=thread_manager, native_max_auto_continues=25):
chunk_counter += 1
if chunk.get('type') == 'content' and 'content' in chunk:
current_response += chunk.get('content', '')
# Print the response as it comes in
print(chunk.get('content', ''), end='', flush=True)
elif chunk.get('type') == 'tool_result':
# Add timestamp and format tool result nicely
tool_name = chunk.get('function_name', 'Tool')
result = chunk.get('result', '')
print(f"\n\n🛠️ TOOL RESULT [{tool_name}] → {result}")
elif chunk.get('type') == 'tool_call':
# Display native tool call chunks as they arrive
tool_call = chunk.get('tool_call', {})
# Check if it's a meaningful part of the tool call to display
args = tool_call.get('function', {}).get('arguments', '')
# Only show when we have substantial arguments or a function name
should_display = (
len(args) > 3 or # More than just '{}'
tool_call.get('function', {}).get('name') # Or we have a name
)
if should_display:
tool_call_counter += 1
tool_name = tool_call.get('function', {}).get('name', 'Building...')
# Print tool call header with counter and tool name
print(f"\n🔧 TOOL CALL #{tool_call_counter} [{tool_name}]")
# Try to parse and pretty print the arguments if they're JSON
try:
# Check if it's complete JSON or just a fragment
if args.strip().startswith('{') and args.strip().endswith('}'):
args_obj = json.loads(args)
# Only print non-empty args to reduce clutter
if args_obj and args_obj != {}:
# Format JSON with nice indentation and color indicators for readability
print(f" ARGS: {json.dumps(args_obj, indent=2)}")
else:
# Only print if there's actual content to show
if args.strip():
print(f" ARGS: {args}")
except json.JSONDecodeError:
if args.strip():
print(f" ARGS: {args}")
# Add a separator for visual clarity
print(" " + "-" * 40)
# Return to the current content display
if current_response:
print("\nContinuing response:", flush=True)
print(current_response, end='', flush=True)
elif chunk.get('type') == 'tool_status':
# Log tool status changes
status = chunk.get('status', '')
function_name = chunk.get('function_name', '')
if status and function_name:
status_emoji = "" if status == "completed" else "" if status == "started" else ""
print(f"\n{status_emoji} TOOL {status.upper()}: {function_name}")
elif chunk.get('type') == 'finish':
# Just log finish reason to console but don't show to user
finish_reason = chunk.get('finish_reason', '')
if finish_reason:
print(f"\n📌 Finished: {finish_reason}")
print(f"\n\n✅ Agent run completed with {tool_call_counter} tool calls")
if __name__ == "__main__":
import asyncio
# Configure any environment variables or setup needed for testing
load_dotenv() # Ensure environment variables are loaded
# Run the test function
asyncio.run(test_agent())