suna/backend/agent/tools/web_search_tool.py

387 lines
17 KiB
Python

from tavily import AsyncTavilyClient
import httpx
from dotenv import load_dotenv
from agentpress.tool import Tool, ToolResult, openapi_schema, usage_example
from utils.config import config
from sandbox.tool_base import SandboxToolsBase
from agentpress.thread_manager import ThreadManager
import json
import os
import datetime
import asyncio
import logging
# TODO: add subpages, etc... in filters as sometimes its necessary
class SandboxWebSearchTool(SandboxToolsBase):
"""Tool for performing web searches using Tavily API and web scraping using Firecrawl."""
def __init__(self, project_id: str, thread_manager: ThreadManager):
super().__init__(project_id, thread_manager)
# Load environment variables
load_dotenv()
# Use API keys from config
self.tavily_api_key = config.TAVILY_API_KEY
self.firecrawl_api_key = config.FIRECRAWL_API_KEY
self.firecrawl_url = config.FIRECRAWL_URL
if not self.tavily_api_key:
raise ValueError("TAVILY_API_KEY not found in configuration")
if not self.firecrawl_api_key:
raise ValueError("FIRECRAWL_API_KEY not found in configuration")
# Tavily asynchronous search client
self.tavily_client = AsyncTavilyClient(api_key=self.tavily_api_key)
@openapi_schema({
"type": "function",
"function": {
"name": "web_search",
"description": "Search the web for up-to-date information on a specific topic using the Tavily API. This tool allows you to gather real-time information from the internet to answer user queries, research topics, validate facts, and find recent developments. Results include titles, URLs, and publication dates. Use this tool for discovering relevant web pages before potentially crawling them for complete content.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query to find relevant web pages. Be specific and include key terms to improve search accuracy. For best results, use natural language questions or keyword combinations that precisely describe what you're looking for."
},
"num_results": {
"type": "integer",
"description": "The number of search results to return. Increase for more comprehensive research or decrease for focused, high-relevance results.",
"default": 20
}
},
"required": ["query"]
}
}
})
@usage_example('''
<function_calls>
<invoke name="web_search">
<parameter name="query">what is Kortix AI and what are they building?</parameter>
<parameter name="num_results">20</parameter>
</invoke>
</function_calls>
<!-- Another search example -->
<function_calls>
<invoke name="web_search">
<parameter name="query">latest AI research on transformer models</parameter>
<parameter name="num_results">20</parameter>
</invoke>
</function_calls>
''')
async def web_search(
self,
query: str,
num_results: int = 20
) -> ToolResult:
"""
Search the web using the Tavily API to find relevant and up-to-date information.
"""
try:
# Ensure we have a valid query
if not query or not isinstance(query, str):
return self.fail_response("A valid search query is required.")
# Normalize num_results
if num_results is None:
num_results = 20
elif isinstance(num_results, int):
num_results = max(1, min(num_results, 50))
elif isinstance(num_results, str):
try:
num_results = max(1, min(int(num_results), 50))
except ValueError:
num_results = 20
else:
num_results = 20
# Execute the search with Tavily
logging.info(f"Executing web search for query: '{query}' with {num_results} results")
search_response = await self.tavily_client.search(
query=query,
max_results=num_results,
include_images=True,
include_answer="advanced",
search_depth="advanced",
)
# Check if we have actual results or an answer
results = search_response.get('results', [])
answer = search_response.get('answer', '')
# Return the complete Tavily response
# This includes the query, answer, results, images and more
logging.info(f"Retrieved search results for query: '{query}' with answer and {len(results)} results")
# Consider search successful if we have either results OR an answer
if len(results) > 0 or (answer and answer.strip()):
return ToolResult(
success=True,
output=json.dumps(search_response, ensure_ascii=False)
)
else:
# No results or answer found
logging.warning(f"No search results or answer found for query: '{query}'")
return ToolResult(
success=False,
output=json.dumps(search_response, ensure_ascii=False)
)
except Exception as e:
error_message = str(e)
logging.error(f"Error performing web search for '{query}': {error_message}")
simplified_message = f"Error performing web search: {error_message[:200]}"
if len(error_message) > 200:
simplified_message += "..."
return self.fail_response(simplified_message)
@openapi_schema({
"type": "function",
"function": {
"name": "scrape_webpage",
"description": "Extract full text content from multiple webpages in a single operation. IMPORTANT: You should ALWAYS collect multiple relevant URLs from web-search results and scrape them all in a single call for efficiency. This tool saves time by processing multiple pages simultaneously rather than one at a time. The extracted text includes the main content of each page without HTML markup.",
"parameters": {
"type": "object",
"properties": {
"urls": {
"type": "string",
"description": "Multiple URLs to scrape, separated by commas. You should ALWAYS include several URLs when possible for efficiency. Example: 'https://example.com/page1,https://example.com/page2,https://example.com/page3'"
}
},
"required": ["urls"]
}
}
})
@usage_example('''
<function_calls>
<invoke name="scrape_webpage">
<parameter name="urls">https://www.kortix.ai/,https://github.com/kortix-ai/suna</parameter>
</invoke>
</function_calls>
''')
async def scrape_webpage(
self,
urls: str
) -> ToolResult:
"""
Retrieve the complete text content of multiple webpages in a single efficient operation.
ALWAYS collect multiple relevant URLs from search results and scrape them all at once
rather than making separate calls for each URL. This is much more efficient.
Parameters:
- urls: Multiple URLs to scrape, separated by commas
"""
try:
logging.info(f"Starting to scrape webpages: {urls}")
# Ensure sandbox is initialized
await self._ensure_sandbox()
# Parse the URLs parameter
if not urls:
logging.warning("Scrape attempt with empty URLs")
return self.fail_response("Valid URLs are required.")
# Split the URLs string into a list
url_list = [url.strip() for url in urls.split(',') if url.strip()]
if not url_list:
logging.warning("No valid URLs found in the input")
return self.fail_response("No valid URLs provided.")
if len(url_list) == 1:
logging.warning("Only a single URL provided - for efficiency you should scrape multiple URLs at once")
logging.info(f"Processing {len(url_list)} URLs: {url_list}")
# Process each URL concurrently and collect results
tasks = [self._scrape_single_url(url) for url in url_list]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results, handling exceptions
processed_results = []
for i, result in enumerate(results):
if isinstance(result, Exception):
logging.error(f"Error processing URL {url_list[i]}: {str(result)}")
processed_results.append({
"url": url_list[i],
"success": False,
"error": str(result)
})
else:
processed_results.append(result)
results = processed_results
# Summarize results
successful = sum(1 for r in results if r.get("success", False))
failed = len(results) - successful
# Create success/failure message
if successful == len(results):
message = f"Successfully scraped all {len(results)} URLs. Results saved to:"
for r in results:
if r.get("file_path"):
message += f"\n- {r.get('file_path')}"
elif successful > 0:
message = f"Scraped {successful} URLs successfully and {failed} failed. Results saved to:"
for r in results:
if r.get("success", False) and r.get("file_path"):
message += f"\n- {r.get('file_path')}"
message += "\n\nFailed URLs:"
for r in results:
if not r.get("success", False):
message += f"\n- {r.get('url')}: {r.get('error', 'Unknown error')}"
else:
error_details = "; ".join([f"{r.get('url')}: {r.get('error', 'Unknown error')}" for r in results])
return self.fail_response(f"Failed to scrape all {len(results)} URLs. Errors: {error_details}")
return ToolResult(
success=True,
output=message
)
except Exception as e:
error_message = str(e)
logging.error(f"Error in scrape_webpage: {error_message}")
return self.fail_response(f"Error processing scrape request: {error_message[:200]}")
async def _scrape_single_url(self, url: str) -> dict:
"""
Helper function to scrape a single URL and return the result information.
"""
# # Add protocol if missing
# if not (url.startswith('http://') or url.startswith('https://')):
# url = 'https://' + url
# logging.info(f"Added https:// protocol to URL: {url}")
logging.info(f"Scraping single URL: {url}")
try:
# ---------- Firecrawl scrape endpoint ----------
logging.info(f"Sending request to Firecrawl for URL: {url}")
async with httpx.AsyncClient() as client:
headers = {
"Authorization": f"Bearer {self.firecrawl_api_key}",
"Content-Type": "application/json",
}
payload = {
"url": url,
"formats": ["markdown"]
}
# Use longer timeout and retry logic for more reliability
max_retries = 3
timeout_seconds = 30
retry_count = 0
while retry_count < max_retries:
try:
logging.info(f"Sending request to Firecrawl (attempt {retry_count + 1}/{max_retries})")
response = await client.post(
f"{self.firecrawl_url}/v1/scrape",
json=payload,
headers=headers,
timeout=timeout_seconds,
)
response.raise_for_status()
data = response.json()
logging.info(f"Successfully received response from Firecrawl for {url}")
break
except (httpx.ReadTimeout, httpx.ConnectTimeout, httpx.ReadError) as timeout_err:
retry_count += 1
logging.warning(f"Request timed out (attempt {retry_count}/{max_retries}): {str(timeout_err)}")
if retry_count >= max_retries:
raise Exception(f"Request timed out after {max_retries} attempts with {timeout_seconds}s timeout")
# Exponential backoff
logging.info(f"Waiting {2 ** retry_count}s before retry")
await asyncio.sleep(2 ** retry_count)
except Exception as e:
# Don't retry on non-timeout errors
logging.error(f"Error during scraping: {str(e)}")
raise e
# Format the response
title = data.get("data", {}).get("metadata", {}).get("title", "")
markdown_content = data.get("data", {}).get("markdown", "")
logging.info(f"Extracted content from {url}: title='{title}', content length={len(markdown_content)}")
formatted_result = {
"title": title,
"url": url,
"text": markdown_content
}
# Add metadata if available
if "metadata" in data.get("data", {}):
formatted_result["metadata"] = data["data"]["metadata"]
logging.info(f"Added metadata: {data['data']['metadata'].keys()}")
# Create a simple filename from the URL domain and date
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
# Extract domain from URL for the filename
from urllib.parse import urlparse
parsed_url = urlparse(url)
domain = parsed_url.netloc.replace("www.", "")
# Clean up domain for filename
domain = "".join([c if c.isalnum() else "_" for c in domain])
safe_filename = f"{timestamp}_{domain}.json"
logging.info(f"Generated filename: {safe_filename}")
# Save results to a file in the /workspace/scrape directory
scrape_dir = f"{self.workspace_path}/scrape"
await self.sandbox.fs.create_folder(scrape_dir, "755")
results_file_path = f"{scrape_dir}/{safe_filename}"
json_content = json.dumps(formatted_result, ensure_ascii=False, indent=2)
logging.info(f"Saving content to file: {results_file_path}, size: {len(json_content)} bytes")
await self.sandbox.fs.upload_file(
json_content.encode(),
results_file_path,
)
return {
"url": url,
"success": True,
"title": title,
"file_path": results_file_path,
"content_length": len(markdown_content)
}
except Exception as e:
error_message = str(e)
logging.error(f"Error scraping URL '{url}': {error_message}")
# Create an error result
return {
"url": url,
"success": False,
"error": error_message
}
if __name__ == "__main__":
async def test_web_search():
"""Test function for the web search tool"""
# This test function is not compatible with the sandbox version
print("Test function needs to be updated for sandbox version")
async def test_scrape_webpage():
"""Test function for the webpage scrape tool"""
# This test function is not compatible with the sandbox version
print("Test function needs to be updated for sandbox version")
async def run_tests():
"""Run all test functions"""
await test_web_search()
await test_scrape_webpage()
asyncio.run(run_tests())