suna/backend/agentpress/thread_manager.py

550 lines
27 KiB
Python

"""
Conversation thread management system for AgentPress.
This module provides comprehensive conversation management, including:
- Thread creation and persistence
- Message handling with support for text and images
- Tool registration and execution
- LLM interaction with streaming support
- Error handling and cleanup
- Context summarization to manage token limits
"""
import json
from typing import List, Dict, Any, Optional, Type, Union, AsyncGenerator, Literal, cast
from services.llm import make_llm_api_call
from agentpress.tool import Tool
from agentpress.tool_registry import ToolRegistry
from agentpress.context_manager import ContextManager
from agentpress.response_processor import (
ResponseProcessor,
ProcessorConfig
)
from services.supabase import DBConnection
from utils.logger import logger
from langfuse.client import StatefulGenerationClient, StatefulTraceClient
from services.langfuse import langfuse
import datetime
from litellm.utils import token_counter
# Type alias for tool choice
ToolChoice = Literal["auto", "required", "none"]
class ThreadManager:
"""Manages conversation threads with LLM models and tool execution.
Provides comprehensive conversation management, handling message threading,
tool registration, and LLM interactions with support for both standard and
XML-based tool execution patterns.
"""
def __init__(self, trace: Optional[StatefulTraceClient] = None, is_agent_builder: bool = False, target_agent_id: Optional[str] = None, agent_config: Optional[dict] = None):
"""Initialize ThreadManager.
Args:
trace: Optional trace client for logging
is_agent_builder: Whether this is an agent builder session
target_agent_id: ID of the agent being built (if in agent builder mode)
agent_config: Optional agent configuration with version information
"""
self.db = DBConnection()
self.tool_registry = ToolRegistry()
self.trace = trace
self.is_agent_builder = is_agent_builder
self.target_agent_id = target_agent_id
self.agent_config = agent_config
if not self.trace:
self.trace = langfuse.trace(name="anonymous:thread_manager")
self.response_processor = ResponseProcessor(
tool_registry=self.tool_registry,
add_message_callback=self.add_message,
trace=self.trace,
is_agent_builder=self.is_agent_builder,
target_agent_id=self.target_agent_id,
agent_config=self.agent_config
)
self.context_manager = ContextManager()
def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
"""Add a tool to the ThreadManager."""
self.tool_registry.register_tool(tool_class, function_names, **kwargs)
async def add_message(
self,
thread_id: str,
type: str,
content: Union[Dict[str, Any], List[Any], str],
is_llm_message: bool = False,
metadata: Optional[Dict[str, Any]] = None,
agent_id: Optional[str] = None,
agent_version_id: Optional[str] = None
):
"""Add a message to the thread in the database.
Args:
thread_id: The ID of the thread to add the message to.
type: The type of the message (e.g., 'text', 'image_url', 'tool_call', 'tool', 'user', 'assistant').
content: The content of the message. Can be a dictionary, list, or string.
It will be stored as JSONB in the database.
is_llm_message: Flag indicating if the message originated from the LLM.
Defaults to False (user message).
metadata: Optional dictionary for additional message metadata.
Defaults to None, stored as an empty JSONB object if None.
agent_id: Optional ID of the agent associated with this message.
agent_version_id: Optional ID of the specific agent version used.
"""
logger.debug(f"Adding message of type '{type}' to thread {thread_id} (agent: {agent_id}, version: {agent_version_id})")
client = await self.db.client
# Prepare data for insertion
data_to_insert = {
'thread_id': thread_id,
'type': type,
'content': content,
'is_llm_message': is_llm_message,
'metadata': metadata or {},
}
# Add agent information if provided
if agent_id:
data_to_insert['agent_id'] = agent_id
if agent_version_id:
data_to_insert['agent_version_id'] = agent_version_id
try:
# Insert the message and get the inserted row data including the id
result = await client.table('messages').insert(data_to_insert).execute()
logger.info(f"Successfully added message to thread {thread_id}")
if result.data and len(result.data) > 0 and isinstance(result.data[0], dict) and 'message_id' in result.data[0]:
return result.data[0]
else:
logger.error(f"Insert operation failed or did not return expected data structure for thread {thread_id}. Result data: {result.data}")
return None
except Exception as e:
logger.error(f"Failed to add message to thread {thread_id}: {str(e)}", exc_info=True)
raise
async def get_llm_messages(self, thread_id: str) -> List[Dict[str, Any]]:
"""Get all messages for a thread.
This method uses the SQL function which handles context truncation
by considering summary messages.
Args:
thread_id: The ID of the thread to get messages for.
Returns:
List of message objects.
"""
logger.debug(f"Getting messages for thread {thread_id}")
client = await self.db.client
try:
# result = await client.rpc('get_llm_formatted_messages', {'p_thread_id': thread_id}).execute()
# Fetch messages in batches of 1000 to avoid overloading the database
all_messages = []
batch_size = 1000
offset = 0
while True:
result = await client.table('messages').select('message_id, content').eq('thread_id', thread_id).eq('is_llm_message', True).order('created_at').range(offset, offset + batch_size - 1).execute()
if not result.data or len(result.data) == 0:
break
all_messages.extend(result.data)
# If we got fewer than batch_size records, we've reached the end
if len(result.data) < batch_size:
break
offset += batch_size
# Use all_messages instead of result.data in the rest of the method
result_data = all_messages
# Parse the returned data which might be stringified JSON
if not result_data:
return []
# Return properly parsed JSON objects
messages = []
for item in result_data:
if isinstance(item['content'], str):
try:
parsed_item = json.loads(item['content'])
parsed_item['message_id'] = item['message_id']
messages.append(parsed_item)
except json.JSONDecodeError:
logger.error(f"Failed to parse message: {item['content']}")
else:
content = item['content']
content['message_id'] = item['message_id']
messages.append(content)
return messages
except Exception as e:
logger.error(f"Failed to get messages for thread {thread_id}: {str(e)}", exc_info=True)
return []
async def run_thread(
self,
thread_id: str,
system_prompt: Dict[str, Any],
stream: bool = True,
temporary_message: Optional[Dict[str, Any]] = None,
llm_model: str = "gpt-4o",
llm_temperature: float = 0,
llm_max_tokens: Optional[int] = None,
processor_config: Optional[ProcessorConfig] = None,
tool_choice: ToolChoice = "auto",
native_max_auto_continues: int = 25,
max_xml_tool_calls: int = 0,
include_xml_examples: bool = False,
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True,
generation: Optional[StatefulGenerationClient] = None,
) -> Union[Dict[str, Any], AsyncGenerator]:
"""Run a conversation thread with LLM integration and tool execution.
Args:
thread_id: The ID of the thread to run
system_prompt: System message to set the assistant's behavior
stream: Use streaming API for the LLM response
temporary_message: Optional temporary user message for this run only
llm_model: The name of the LLM model to use
llm_temperature: Temperature parameter for response randomness (0-1)
llm_max_tokens: Maximum tokens in the LLM response
processor_config: Configuration for the response processor
tool_choice: Tool choice preference ("auto", "required", "none")
native_max_auto_continues: Maximum number of automatic continuations when
finish_reason="tool_calls" (0 disables auto-continue)
max_xml_tool_calls: Maximum number of XML tool calls to allow (0 = no limit)
include_xml_examples: Whether to include XML tool examples in the system prompt
enable_thinking: Whether to enable thinking before making a decision
reasoning_effort: The effort level for reasoning
enable_context_manager: Whether to enable automatic context summarization.
Returns:
An async generator yielding response chunks or error dict
"""
logger.info(f"Starting thread execution for thread {thread_id}")
logger.info(f"Using model: {llm_model}")
# Log parameters
logger.info(f"Parameters: model={llm_model}, temperature={llm_temperature}, max_tokens={llm_max_tokens}")
logger.info(f"Auto-continue: max={native_max_auto_continues}, XML tool limit={max_xml_tool_calls}")
# Log model info
logger.info(f"🤖 Thread {thread_id}: Using model {llm_model}")
# Ensure processor_config is not None
config = processor_config or ProcessorConfig()
# Apply max_xml_tool_calls if specified and not already set in config
if max_xml_tool_calls > 0 and not config.max_xml_tool_calls:
config.max_xml_tool_calls = max_xml_tool_calls
# Create a working copy of the system prompt to potentially modify
working_system_prompt = system_prompt.copy()
# Add XML examples to system prompt if requested, do this only ONCE before the loop
if include_xml_examples and config.xml_tool_calling:
xml_examples = self.tool_registry.get_xml_examples()
if xml_examples:
examples_content = """
--- XML TOOL CALLING ---
In this environment you have access to a set of tools you can use to answer the user's question. The tools are specified in XML format.
Format your tool calls using the specified XML tags. Place parameters marked as 'attribute' within the opening tag (e.g., `<tag attribute='value'>`). Place parameters marked as 'content' between the opening and closing tags. Place parameters marked as 'element' within their own child tags (e.g., `<tag><element>value</element></tag>`). Refer to the examples provided below for the exact structure of each tool.
String and scalar parameters should be specified as attributes, while content goes between tags.
Note that spaces for string values are not stripped. The output is parsed with regular expressions.
Here are the XML tools available with examples:
"""
for tag_name, example in xml_examples.items():
examples_content += f"<{tag_name}> Example: {example}\\n"
# # Save examples content to a file
# try:
# with open('xml_examples.txt', 'w') as f:
# f.write(examples_content)
# logger.debug("Saved XML examples to xml_examples.txt")
# except Exception as e:
# logger.error(f"Failed to save XML examples to file: {e}")
system_content = working_system_prompt.get('content')
if isinstance(system_content, str):
working_system_prompt['content'] += examples_content
logger.debug("Appended XML examples to string system prompt content.")
elif isinstance(system_content, list):
appended = False
for item in working_system_prompt['content']: # Modify the copy
if isinstance(item, dict) and item.get('type') == 'text' and 'text' in item:
item['text'] += examples_content
logger.debug("Appended XML examples to the first text block in list system prompt content.")
appended = True
break
if not appended:
logger.warning("System prompt content is a list but no text block found to append XML examples.")
else:
logger.warning(f"System prompt content is of unexpected type ({type(system_content)}), cannot add XML examples.")
# Control whether we need to auto-continue due to tool_calls finish reason
auto_continue = True
auto_continue_count = 0
# Shared state for continuous streaming across auto-continues
continuous_state = {
'accumulated_content': '',
'thread_run_id': None
}
# Define inner function to handle a single run
async def _run_once(temp_msg=None):
try:
# Ensure config is available in this scope
nonlocal config
# Note: config is now guaranteed to exist due to check above
# 1. Get messages from thread for LLM call
messages = await self.get_llm_messages(thread_id)
# 2. Check token count before proceeding
token_count = 0
try:
# Use the potentially modified working_system_prompt for token counting
token_count = token_counter(model=llm_model, messages=[working_system_prompt] + messages)
token_threshold = self.context_manager.token_threshold
logger.info(f"Thread {thread_id} token count: {token_count}/{token_threshold} ({(token_count/token_threshold)*100:.1f}%)")
except Exception as e:
logger.error(f"Error counting tokens or summarizing: {str(e)}")
# 3. Prepare messages for LLM call + add temporary message if it exists
# Use the working_system_prompt which may contain the XML examples
prepared_messages = [working_system_prompt]
# Find the last user message index
last_user_index = -1
for i, msg in enumerate(messages):
if msg.get('role') == 'user':
last_user_index = i
# Insert temporary message before the last user message if it exists
if temp_msg and last_user_index >= 0:
prepared_messages.extend(messages[:last_user_index])
prepared_messages.append(temp_msg)
prepared_messages.extend(messages[last_user_index:])
logger.debug("Added temporary message before the last user message")
else:
# If no user message or no temporary message, just add all messages
prepared_messages.extend(messages)
if temp_msg:
prepared_messages.append(temp_msg)
logger.debug("Added temporary message to the end of prepared messages")
# Add partial assistant content for auto-continue context (without saving to DB)
if auto_continue_count > 0 and continuous_state.get('accumulated_content'):
partial_content = continuous_state.get('accumulated_content', '')
# Create temporary assistant message with just the text content
temporary_assistant_message = {
"role": "assistant",
"content": partial_content
}
prepared_messages.append(temporary_assistant_message)
logger.info(f"Added temporary assistant message with {len(partial_content)} chars for auto-continue context")
# 4. Prepare tools for LLM call
openapi_tool_schemas = None
if config.native_tool_calling:
openapi_tool_schemas = self.tool_registry.get_openapi_schemas()
logger.debug(f"Retrieved {len(openapi_tool_schemas) if openapi_tool_schemas else 0} OpenAPI tool schemas")
prepared_messages = self.context_manager.compress_messages(prepared_messages, llm_model)
# 5. Make LLM API call
logger.debug("Making LLM API call")
try:
if generation:
generation.update(
input=prepared_messages,
start_time=datetime.datetime.now(datetime.timezone.utc),
model=llm_model,
model_parameters={
"max_tokens": llm_max_tokens,
"temperature": llm_temperature,
"enable_thinking": enable_thinking,
"reasoning_effort": reasoning_effort,
"tool_choice": tool_choice,
"tools": openapi_tool_schemas,
}
)
llm_response = await make_llm_api_call(
prepared_messages, # Pass the potentially modified messages
llm_model,
temperature=llm_temperature,
max_tokens=llm_max_tokens,
tools=openapi_tool_schemas,
tool_choice=tool_choice if config.native_tool_calling else "none",
stream=stream,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort
)
logger.debug("Successfully received raw LLM API response stream/object")
except Exception as e:
logger.error(f"Failed to make LLM API call: {str(e)}", exc_info=True)
raise
# 6. Process LLM response using the ResponseProcessor
if stream:
logger.debug("Processing streaming response")
# Ensure we have an async generator for streaming
if hasattr(llm_response, '__aiter__'):
response_generator = self.response_processor.process_streaming_response(
llm_response=cast(AsyncGenerator, llm_response),
thread_id=thread_id,
config=config,
prompt_messages=prepared_messages,
llm_model=llm_model,
can_auto_continue=(native_max_auto_continues > 0),
auto_continue_count=auto_continue_count,
continuous_state=continuous_state
)
else:
# Fallback to non-streaming if response is not iterable
response_generator = self.response_processor.process_non_streaming_response(
llm_response=llm_response,
thread_id=thread_id,
config=config,
prompt_messages=prepared_messages,
llm_model=llm_model,
)
return response_generator
else:
logger.debug("Processing non-streaming response")
# Pass through the response generator without try/except to let errors propagate up
response_generator = self.response_processor.process_non_streaming_response(
llm_response=llm_response,
thread_id=thread_id,
config=config,
prompt_messages=prepared_messages,
llm_model=llm_model,
)
return response_generator # Return the generator
except Exception as e:
logger.error(f"Error in run_thread: {str(e)}", exc_info=True)
# Return the error as a dict to be handled by the caller
return {
"type": "status",
"status": "error",
"message": str(e)
}
# Define a wrapper generator that handles auto-continue logic
async def auto_continue_wrapper():
nonlocal auto_continue, auto_continue_count
while auto_continue and (native_max_auto_continues == 0 or auto_continue_count < native_max_auto_continues):
# Reset auto_continue for this iteration
auto_continue = False
# Run the thread once, passing the potentially modified system prompt
# Pass temp_msg only on the first iteration
try:
response_gen = await _run_once(temporary_message if auto_continue_count == 0 else None)
# Handle error responses
if isinstance(response_gen, dict) and "status" in response_gen and response_gen["status"] == "error":
logger.error(f"Error in auto_continue_wrapper: {response_gen.get('message', 'Unknown error')}")
yield response_gen
return # Exit the generator on error
# Process each chunk
try:
if hasattr(response_gen, '__aiter__'):
async for chunk in cast(AsyncGenerator, response_gen):
# Check if this is a finish reason chunk with tool_calls or xml_tool_limit_reached
if chunk.get('type') == 'finish':
if chunk.get('finish_reason') == 'tool_calls':
# Only auto-continue if enabled (max > 0)
if native_max_auto_continues > 0:
logger.info(f"Detected finish_reason='tool_calls', auto-continuing ({auto_continue_count + 1}/{native_max_auto_continues})")
auto_continue = True
auto_continue_count += 1
# Don't yield the finish chunk to avoid confusing the client
continue
elif chunk.get('finish_reason') == 'xml_tool_limit_reached':
# Don't auto-continue if XML tool limit was reached
logger.info(f"Detected finish_reason='xml_tool_limit_reached', stopping auto-continue")
auto_continue = False
# Still yield the chunk to inform the client
elif chunk.get('type') == 'status':
# if the finish reason is length, auto-continue
content = json.loads(chunk.get('content'))
if content.get('finish_reason') == 'length':
logger.info(f"Detected finish_reason='length', auto-continuing ({auto_continue_count + 1}/{native_max_auto_continues})")
auto_continue = True
auto_continue_count += 1
continue
# Otherwise just yield the chunk normally
yield chunk
else:
# response_gen is not iterable (likely an error dict), yield it directly
yield response_gen
# If not auto-continuing, we're done
if not auto_continue:
break
except Exception as e:
if ("AnthropicException - Overloaded" in str(e)):
logger.error(f"AnthropicException - Overloaded detected - Falling back to OpenRouter: {str(e)}", exc_info=True)
nonlocal llm_model
llm_model = f"openrouter/{llm_model}"
auto_continue = True
continue # Continue the loop
else:
# If there's any other exception, log it, yield an error status, and stop execution
logger.error(f"Error in auto_continue_wrapper generator: {str(e)}", exc_info=True)
yield {
"type": "status",
"status": "error",
"message": f"Error in thread processing: {str(e)}"
}
return # Exit the generator on any error
except Exception as outer_e:
# Catch exceptions from _run_once itself
logger.error(f"Error executing thread: {str(outer_e)}", exc_info=True)
yield {
"type": "status",
"status": "error",
"message": f"Error executing thread: {str(outer_e)}"
}
return # Exit immediately on exception from _run_once
# If we've reached the max auto-continues, log a warning
if auto_continue and auto_continue_count >= native_max_auto_continues:
logger.warning(f"Reached maximum auto-continue limit ({native_max_auto_continues}), stopping.")
yield {
"type": "content",
"content": f"\n[Agent reached maximum auto-continue limit of {native_max_auto_continues}]"
}
# If auto-continue is disabled (max=0), just run once
if native_max_auto_continues == 0:
logger.info("Auto-continue is disabled (native_max_auto_continues=0)")
# Pass the potentially modified system prompt and temp message
return await _run_once(temporary_message)
# Otherwise return the auto-continue wrapper generator
return auto_continue_wrapper()