suna/backend/agent/run.py

750 lines
36 KiB
Python

import os
import json
import asyncio
import datetime
from typing import Optional, Dict, List, Any, AsyncGenerator
from dataclasses import dataclass
from agent.tools.message_tool import MessageTool
from agent.tools.sb_deploy_tool import SandboxDeployTool
from agent.tools.sb_expose_tool import SandboxExposeTool
from agent.tools.web_search_tool import SandboxWebSearchTool
from dotenv import load_dotenv
from utils.config import config
from agent.agent_builder_prompt import get_agent_builder_prompt
from agentpress.thread_manager import ThreadManager
from agentpress.response_processor import ProcessorConfig
from agent.tools.sb_shell_tool import SandboxShellTool
from agent.tools.sb_files_tool import SandboxFilesTool
from agent.tools.data_providers_tool import DataProvidersTool
from agent.tools.expand_msg_tool import ExpandMessageTool
from agent.prompt import get_system_prompt
from utils.logger import logger
from utils.auth_utils import get_account_id_from_thread
from services.billing import check_billing_status
from agent.tools.sb_vision_tool import SandboxVisionTool
from agent.tools.sb_image_edit_tool import SandboxImageEditTool
from agent.tools.sb_presentation_outline_tool import SandboxPresentationOutlineTool
from agent.tools.sb_presentation_tool import SandboxPresentationTool
from services.langfuse import langfuse
from langfuse.client import StatefulTraceClient
from agent.tools.mcp_tool_wrapper import MCPToolWrapper
from agent.tools.task_list_tool import TaskListTool
from agentpress.tool import SchemaType
from agent.tools.sb_sheets_tool import SandboxSheetsTool
from agent.tools.sb_web_dev_tool import SandboxWebDevTool
from agent.tools.sb_upload_file_tool import SandboxUploadFileTool
load_dotenv()
@dataclass
class AgentConfig:
thread_id: str
project_id: str
stream: bool
native_max_auto_continues: int = 25
max_iterations: int = 100
model_name: str = "openai/gpt-5-mini"
enable_thinking: Optional[bool] = False
reasoning_effort: Optional[str] = 'low'
enable_context_manager: bool = True
agent_config: Optional[dict] = None
trace: Optional[StatefulTraceClient] = None
class ToolManager:
def __init__(self, thread_manager: ThreadManager, project_id: str, thread_id: str):
self.thread_manager = thread_manager
self.project_id = project_id
self.thread_id = thread_id
def register_all_tools(self, agent_id: Optional[str] = None, disabled_tools: Optional[List[str]] = None):
"""Register all available tools by default, with optional exclusions.
Args:
agent_id: Optional agent ID for agent builder tools
disabled_tools: List of tool names to exclude from registration
"""
disabled_tools = disabled_tools or []
logger.debug(f"Registering tools with disabled list: {disabled_tools}")
# Core tools - always enabled
self._register_core_tools()
# Sandbox tools
self._register_sandbox_tools(disabled_tools)
# Data and utility tools
self._register_utility_tools(disabled_tools)
# Agent builder tools - register if agent_id provided
if agent_id:
self._register_agent_builder_tools(agent_id, disabled_tools)
# Browser tool
self._register_browser_tool(disabled_tools)
logger.debug(f"Tool registration complete. Registered tools: {list(self.thread_manager.tool_registry.tools.keys())}")
def _register_core_tools(self):
"""Register core tools that are always available."""
self.thread_manager.add_tool(ExpandMessageTool, thread_id=self.thread_id, thread_manager=self.thread_manager)
self.thread_manager.add_tool(MessageTool)
self.thread_manager.add_tool(TaskListTool, project_id=self.project_id, thread_manager=self.thread_manager, thread_id=self.thread_id)
def _register_sandbox_tools(self, disabled_tools: List[str]):
"""Register sandbox-related tools."""
sandbox_tools = [
('sb_shell_tool', SandboxShellTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_files_tool', SandboxFilesTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_deploy_tool', SandboxDeployTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_expose_tool', SandboxExposeTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('web_search_tool', SandboxWebSearchTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_vision_tool', SandboxVisionTool, {'project_id': self.project_id, 'thread_id': self.thread_id, 'thread_manager': self.thread_manager}),
('sb_image_edit_tool', SandboxImageEditTool, {'project_id': self.project_id, 'thread_id': self.thread_id, 'thread_manager': self.thread_manager}),
('sb_presentation_outline_tool', SandboxPresentationOutlineTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_presentation_tool', SandboxPresentationTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_sheets_tool', SandboxSheetsTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
('sb_web_dev_tool', SandboxWebDevTool, {'project_id': self.project_id, 'thread_id': self.thread_id, 'thread_manager': self.thread_manager}),
('sb_upload_file_tool', SandboxUploadFileTool, {'project_id': self.project_id, 'thread_manager': self.thread_manager}),
]
for tool_name, tool_class, kwargs in sandbox_tools:
if tool_name not in disabled_tools:
self.thread_manager.add_tool(tool_class, **kwargs)
logger.debug(f"Registered {tool_name}")
def _register_utility_tools(self, disabled_tools: List[str]):
"""Register utility and data provider tools."""
if config.RAPID_API_KEY and 'data_providers_tool' not in disabled_tools:
self.thread_manager.add_tool(DataProvidersTool)
logger.debug("Registered data_providers_tool")
def _register_agent_builder_tools(self, agent_id: str, disabled_tools: List[str]):
"""Register agent builder tools."""
from agent.tools.agent_builder_tools.agent_config_tool import AgentConfigTool
from agent.tools.agent_builder_tools.mcp_search_tool import MCPSearchTool
from agent.tools.agent_builder_tools.credential_profile_tool import CredentialProfileTool
from agent.tools.agent_builder_tools.workflow_tool import WorkflowTool
from agent.tools.agent_builder_tools.trigger_tool import TriggerTool
from services.supabase import DBConnection
db = DBConnection()
agent_builder_tools = [
('agent_config_tool', AgentConfigTool),
('mcp_search_tool', MCPSearchTool),
('credential_profile_tool', CredentialProfileTool),
('workflow_tool', WorkflowTool),
('trigger_tool', TriggerTool),
]
for tool_name, tool_class in agent_builder_tools:
if tool_name not in disabled_tools:
self.thread_manager.add_tool(tool_class, thread_manager=self.thread_manager, db_connection=db, agent_id=agent_id)
logger.debug(f"Registered {tool_name}")
def _register_browser_tool(self, disabled_tools: List[str]):
"""Register browser tool."""
if 'browser_tool' not in disabled_tools:
from agent.tools.browser_tool import BrowserTool
self.thread_manager.add_tool(BrowserTool, project_id=self.project_id, thread_id=self.thread_id, thread_manager=self.thread_manager)
logger.debug("Registered browser_tool")
class MCPManager:
def __init__(self, thread_manager: ThreadManager, account_id: str):
self.thread_manager = thread_manager
self.account_id = account_id
async def register_mcp_tools(self, agent_config: dict) -> Optional[MCPToolWrapper]:
all_mcps = []
if agent_config.get('configured_mcps'):
all_mcps.extend(agent_config['configured_mcps'])
if agent_config.get('custom_mcps'):
for custom_mcp in agent_config['custom_mcps']:
custom_type = custom_mcp.get('customType', custom_mcp.get('type', 'sse'))
if custom_type == 'pipedream':
if 'config' not in custom_mcp:
custom_mcp['config'] = {}
if not custom_mcp['config'].get('external_user_id'):
profile_id = custom_mcp['config'].get('profile_id')
if profile_id:
try:
from pipedream import profile_service
from uuid import UUID
profile = await profile_service.get_profile(UUID(self.account_id), UUID(profile_id))
if profile:
custom_mcp['config']['external_user_id'] = profile.external_user_id
except Exception as e:
logger.error(f"Error retrieving external_user_id from profile {profile_id}: {e}")
if 'headers' in custom_mcp['config'] and 'x-pd-app-slug' in custom_mcp['config']['headers']:
custom_mcp['config']['app_slug'] = custom_mcp['config']['headers']['x-pd-app-slug']
elif custom_type == 'composio':
qualified_name = custom_mcp.get('qualifiedName')
if not qualified_name:
qualified_name = f"composio.{custom_mcp['name'].replace(' ', '_').lower()}"
mcp_config = {
'name': custom_mcp['name'],
'qualifiedName': qualified_name,
'config': custom_mcp.get('config', {}),
'enabledTools': custom_mcp.get('enabledTools', []),
'instructions': custom_mcp.get('instructions', ''),
'isCustom': True,
'customType': 'composio'
}
all_mcps.append(mcp_config)
continue
mcp_config = {
'name': custom_mcp['name'],
'qualifiedName': f"custom_{custom_type}_{custom_mcp['name'].replace(' ', '_').lower()}",
'config': custom_mcp['config'],
'enabledTools': custom_mcp.get('enabledTools', []),
'instructions': custom_mcp.get('instructions', ''),
'isCustom': True,
'customType': custom_type
}
all_mcps.append(mcp_config)
if not all_mcps:
return None
mcp_wrapper_instance = MCPToolWrapper(mcp_configs=all_mcps)
try:
await mcp_wrapper_instance.initialize_and_register_tools()
updated_schemas = mcp_wrapper_instance.get_schemas()
for method_name, schema_list in updated_schemas.items():
for schema in schema_list:
self.thread_manager.tool_registry.tools[method_name] = {
"instance": mcp_wrapper_instance,
"schema": schema
}
logger.debug(f"⚡ Registered {len(updated_schemas)} MCP tools (Redis cache enabled)")
return mcp_wrapper_instance
except Exception as e:
logger.error(f"Failed to initialize MCP tools: {e}")
return None
class PromptManager:
@staticmethod
async def build_system_prompt(model_name: str, agent_config: Optional[dict],
thread_id: str,
mcp_wrapper_instance: Optional[MCPToolWrapper],
client=None) -> dict:
default_system_content = get_system_prompt()
if "anthropic" not in model_name.lower():
sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt')
with open(sample_response_path, 'r') as file:
sample_response = file.read()
default_system_content = default_system_content + "\n\n <sample_assistant_response>" + sample_response + "</sample_assistant_response>"
# Check if agent has builder tools enabled - use agent builder prompt
if agent_config:
agentpress_tools = agent_config.get('agentpress_tools', {})
has_builder_tools = any(
agentpress_tools.get(tool, False)
for tool in ['agent_config_tool', 'mcp_search_tool', 'credential_profile_tool', 'workflow_tool', 'trigger_tool']
)
if has_builder_tools:
system_content = get_agent_builder_prompt()
elif agent_config.get('system_prompt'):
system_content = agent_config['system_prompt'].strip()
else:
system_content = default_system_content
else:
system_content = default_system_content
# Add agent knowledge base context if available
if client and agent_config and agent_config.get('agent_id'):
try:
logger.debug(f"Retrieving agent knowledge base context for agent {agent_config['agent_id']}")
# Use only agent-based knowledge base context
kb_result = await client.rpc('get_agent_knowledge_base_context', {
'p_agent_id': agent_config['agent_id']
}).execute()
if kb_result.data and kb_result.data.strip():
logger.debug(f"Found agent knowledge base context, adding to system prompt (length: {len(kb_result.data)} chars)")
# logger.debug(f"Knowledge base data object: {kb_result.data[:500]}..." if len(kb_result.data) > 500 else f"Knowledge base data object: {kb_result.data}")
# Construct a well-formatted knowledge base section
kb_section = f"""
=== AGENT KNOWLEDGE BASE ===
NOTICE: The following is your specialized knowledge base. This information should be considered authoritative for your responses and should take precedence over general knowledge when relevant.
{kb_result.data}
=== END AGENT KNOWLEDGE BASE ===
IMPORTANT: Always reference and utilize the knowledge base information above when it's relevant to user queries. This knowledge is specific to your role and capabilities."""
system_content += kb_section
else:
logger.debug("No knowledge base context found for this agent")
except Exception as e:
logger.error(f"Error retrieving knowledge base context for agent {agent_config.get('agent_id', 'unknown')}: {e}")
# Continue without knowledge base context rather than failing
if agent_config and (agent_config.get('configured_mcps') or agent_config.get('custom_mcps')) and mcp_wrapper_instance and mcp_wrapper_instance._initialized:
mcp_info = "\n\n--- MCP Tools Available ---\n"
mcp_info += "You have access to external MCP (Model Context Protocol) server tools.\n"
mcp_info += "MCP tools can be called directly using their native function names in the standard function calling format:\n"
mcp_info += '<function_calls>\n'
mcp_info += '<invoke name="{tool_name}">\n'
mcp_info += '<parameter name="param1">value1</parameter>\n'
mcp_info += '<parameter name="param2">value2</parameter>\n'
mcp_info += '</invoke>\n'
mcp_info += '</function_calls>\n\n'
mcp_info += "Available MCP tools:\n"
try:
registered_schemas = mcp_wrapper_instance.get_schemas()
for method_name, schema_list in registered_schemas.items():
for schema in schema_list:
if schema.schema_type == SchemaType.OPENAPI:
func_info = schema.schema.get('function', {})
description = func_info.get('description', 'No description available')
mcp_info += f"- **{method_name}**: {description}\n"
params = func_info.get('parameters', {})
props = params.get('properties', {})
if props:
mcp_info += f" Parameters: {', '.join(props.keys())}\n"
except Exception as e:
logger.error(f"Error listing MCP tools: {e}")
mcp_info += "- Error loading MCP tool list\n"
mcp_info += "\n🚨 CRITICAL MCP TOOL RESULT INSTRUCTIONS 🚨\n"
mcp_info += "When you use ANY MCP (Model Context Protocol) tools:\n"
mcp_info += "1. ALWAYS read and use the EXACT results returned by the MCP tool\n"
mcp_info += "2. For search tools: ONLY cite URLs, sources, and information from the actual search results\n"
mcp_info += "3. For any tool: Base your response entirely on the tool's output - do NOT add external information\n"
mcp_info += "4. DO NOT fabricate, invent, hallucinate, or make up any sources, URLs, or data\n"
mcp_info += "5. If you need more information, call the MCP tool again with different parameters\n"
mcp_info += "6. When writing reports/summaries: Reference ONLY the data from MCP tool results\n"
mcp_info += "7. If the MCP tool doesn't return enough information, explicitly state this limitation\n"
mcp_info += "8. Always double-check that every fact, URL, and reference comes from the MCP tool output\n"
mcp_info += "\nIMPORTANT: MCP tool results are your PRIMARY and ONLY source of truth for external data!\n"
mcp_info += "NEVER supplement MCP results with your training data or make assumptions beyond what the tools provide.\n"
system_content += mcp_info
now = datetime.datetime.now(datetime.timezone.utc)
datetime_info = f"\n\n=== CURRENT DATE/TIME INFORMATION ===\n"
datetime_info += f"Today's date: {now.strftime('%A, %B %d, %Y')}\n"
datetime_info += f"Current UTC time: {now.strftime('%H:%M:%S UTC')}\n"
datetime_info += f"Current year: {now.strftime('%Y')}\n"
datetime_info += f"Current month: {now.strftime('%B')}\n"
datetime_info += f"Current day: {now.strftime('%A')}\n"
datetime_info += "Use this information for any time-sensitive tasks, research, or when current date/time context is needed.\n"
system_content += datetime_info
return {"role": "system", "content": system_content}
class MessageManager:
def __init__(self, client, thread_id: str, model_name: str, trace: Optional[StatefulTraceClient],
agent_config: Optional[dict] = None, enable_context_manager: bool = False):
self.client = client
self.thread_id = thread_id
self.model_name = model_name
self.trace = trace
self.agent_config = agent_config
self.enable_context_manager = enable_context_manager
async def build_temporary_message(self) -> Optional[dict]:
"""Build temporary message based on configuration and context."""
system_message = None
# Add agent builder system prompt if agent has builder tools enabled
if self.agent_config:
agentpress_tools = self.agent_config.get('agentpress_tools', {})
has_builder_tools = any(
agentpress_tools.get(tool, False)
for tool in ['agent_config_tool', 'mcp_search_tool', 'credential_profile_tool', 'workflow_tool', 'trigger_tool']
)
if has_builder_tools:
from agent.agent_builder_prompt import AGENT_BUILDER_SYSTEM_PROMPT
system_message = AGENT_BUILDER_SYSTEM_PROMPT
# Add agent config system prompt
if not system_message and self.agent_config and 'system_prompt' in self.agent_config:
system_prompt = self.agent_config['system_prompt']
if system_prompt:
system_message = system_prompt
# Build and return the temporary message if we have content
if system_message:
return {
"temporary": True,
"role": "system",
"content": system_message
}
return None
class AgentRunner:
def __init__(self, config: AgentConfig):
self.config = config
async def setup(self):
if not self.config.trace:
self.config.trace = langfuse.trace(name="run_agent", session_id=self.config.thread_id, metadata={"project_id": self.config.project_id})
self.thread_manager = ThreadManager(
trace=self.config.trace,
agent_config=self.config.agent_config
)
self.client = await self.thread_manager.db.client
self.account_id = await get_account_id_from_thread(self.client, self.config.thread_id)
if not self.account_id:
raise ValueError("Could not determine account ID for thread")
project = await self.client.table('projects').select('*').eq('project_id', self.config.project_id).execute()
if not project.data or len(project.data) == 0:
raise ValueError(f"Project {self.config.project_id} not found")
project_data = project.data[0]
sandbox_info = project_data.get('sandbox', {})
if not sandbox_info.get('id'):
# Sandbox is created lazily by tools when required. Do not fail setup
# if no sandbox is present — tools will call `_ensure_sandbox()`
# which will create and persist the sandbox metadata when needed.
logger.debug(f"No sandbox found for project {self.config.project_id}; will create lazily when needed")
async def setup_tools(self):
tool_manager = ToolManager(self.thread_manager, self.config.project_id, self.config.thread_id)
# Use agent ID from agent config if available (for any agent with builder tools enabled)
agent_id = None
if self.config.agent_config:
agent_id = self.config.agent_config.get('agent_id')
# Convert agent config to disabled tools list
disabled_tools = self._get_disabled_tools_from_config()
# Register all tools with exclusions
tool_manager.register_all_tools(agent_id=agent_id, disabled_tools=disabled_tools)
def _get_disabled_tools_from_config(self) -> List[str]:
"""Convert agent config to list of disabled tools."""
disabled_tools = []
if not self.config.agent_config or 'agentpress_tools' not in self.config.agent_config:
# No tool configuration - enable all tools by default
return disabled_tools
raw_tools = self.config.agent_config['agentpress_tools']
# Handle different formats of tool configuration
if not isinstance(raw_tools, dict):
# If not a dict, assume all tools are enabled
return disabled_tools
# Special case: Suna default agents with empty tool config enable all tools
if self.config.agent_config.get('is_suna_default', False) and not raw_tools:
return disabled_tools
def is_tool_enabled(tool_name: str) -> bool:
try:
tool_config = raw_tools.get(tool_name, True) # Default to True (enabled) if not specified
if isinstance(tool_config, bool):
return tool_config
elif isinstance(tool_config, dict):
return tool_config.get('enabled', True) # Default to True (enabled) if not specified
else:
return True # Default to enabled
except Exception:
return True # Default to enabled
# List of all available tools
all_tools = [
'sb_shell_tool', 'sb_files_tool', 'sb_deploy_tool', 'sb_expose_tool',
'web_search_tool', 'sb_vision_tool', 'sb_presentation_tool', 'sb_image_edit_tool',
'sb_sheets_tool', 'sb_web_dev_tool', 'data_providers_tool', 'browser_tool',
'agent_config_tool', 'mcp_search_tool', 'credential_profile_tool',
'workflow_tool', 'trigger_tool'
]
# Add tools that are explicitly disabled
for tool_name in all_tools:
if not is_tool_enabled(tool_name):
disabled_tools.append(tool_name)
# Special handling for presentation tools
if 'sb_presentation_tool' in disabled_tools:
disabled_tools.extend(['sb_presentation_outline_tool'])
logger.debug(f"Disabled tools from config: {disabled_tools}")
return disabled_tools
async def setup_mcp_tools(self) -> Optional[MCPToolWrapper]:
if not self.config.agent_config:
return None
mcp_manager = MCPManager(self.thread_manager, self.account_id)
return await mcp_manager.register_mcp_tools(self.config.agent_config)
def get_max_tokens(self) -> Optional[int]:
logger.debug(f"get_max_tokens called with: '{self.config.model_name}' (type: {type(self.config.model_name)})")
if "sonnet" in self.config.model_name.lower():
return 8192
elif "gpt-4" in self.config.model_name.lower():
return 4096
elif "gemini-2.5-pro" in self.config.model_name.lower():
return 64000
elif "kimi-k2" in self.config.model_name.lower():
return 8192
return None
async def run(self) -> AsyncGenerator[Dict[str, Any], None]:
await self.setup()
await self.setup_tools()
mcp_wrapper_instance = await self.setup_mcp_tools()
system_message = await PromptManager.build_system_prompt(
self.config.model_name, self.config.agent_config,
self.config.thread_id,
mcp_wrapper_instance, self.client
)
logger.debug(f"model_name received: {self.config.model_name}")
iteration_count = 0
continue_execution = True
latest_user_message = await self.client.table('messages').select('*').eq('thread_id', self.config.thread_id).eq('type', 'user').order('created_at', desc=True).limit(1).execute()
if latest_user_message.data and len(latest_user_message.data) > 0:
data = latest_user_message.data[0]['content']
if isinstance(data, str):
data = json.loads(data)
if self.config.trace:
self.config.trace.update(input=data['content'])
message_manager = MessageManager(self.client, self.config.thread_id, self.config.model_name, self.config.trace,
agent_config=self.config.agent_config, enable_context_manager=self.config.enable_context_manager)
while continue_execution and iteration_count < self.config.max_iterations:
iteration_count += 1
can_run, message, subscription = await check_billing_status(self.client, self.account_id)
if not can_run:
error_msg = f"Billing limit reached: {message}"
yield {
"type": "status",
"status": "stopped",
"message": error_msg
}
break
latest_message = await self.client.table('messages').select('*').eq('thread_id', self.config.thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
if latest_message.data and len(latest_message.data) > 0:
message_type = latest_message.data[0].get('type')
if message_type == 'assistant':
continue_execution = False
break
temporary_message = await message_manager.build_temporary_message()
max_tokens = self.get_max_tokens()
logger.debug(f"max_tokens: {max_tokens}")
generation = self.config.trace.generation(name="thread_manager.run_thread") if self.config.trace else None
try:
response = await self.thread_manager.run_thread(
thread_id=self.config.thread_id,
system_prompt=system_message,
stream=self.config.stream,
llm_model=self.config.model_name,
llm_temperature=0,
llm_max_tokens=max_tokens,
tool_choice="auto",
max_xml_tool_calls=1,
temporary_message=temporary_message,
processor_config=ProcessorConfig(
xml_tool_calling=True,
native_tool_calling=False,
execute_tools=True,
execute_on_stream=True,
tool_execution_strategy="parallel",
xml_adding_strategy="user_message"
),
native_max_auto_continues=self.config.native_max_auto_continues,
include_xml_examples=True,
enable_thinking=self.config.enable_thinking,
reasoning_effort=self.config.reasoning_effort,
enable_context_manager=self.config.enable_context_manager,
generation=generation
)
if isinstance(response, dict) and "status" in response and response["status"] == "error":
yield response
break
last_tool_call = None
agent_should_terminate = False
error_detected = False
full_response = ""
try:
if hasattr(response, '__aiter__') and not isinstance(response, dict):
async for chunk in response:
if isinstance(chunk, dict) and chunk.get('type') == 'status' and chunk.get('status') == 'error':
error_detected = True
yield chunk
continue
if chunk.get('type') == 'status':
try:
metadata = chunk.get('metadata', {})
if isinstance(metadata, str):
metadata = json.loads(metadata)
if metadata.get('agent_should_terminate'):
agent_should_terminate = True
content = chunk.get('content', {})
if isinstance(content, str):
content = json.loads(content)
if content.get('function_name'):
last_tool_call = content['function_name']
elif content.get('xml_tag_name'):
last_tool_call = content['xml_tag_name']
except Exception:
pass
if chunk.get('type') == 'assistant' and 'content' in chunk:
try:
content = chunk.get('content', '{}')
if isinstance(content, str):
assistant_content_json = json.loads(content)
else:
assistant_content_json = content
assistant_text = assistant_content_json.get('content', '')
full_response += assistant_text
if isinstance(assistant_text, str):
if '</ask>' in assistant_text or '</complete>' in assistant_text or '</web-browser-takeover>' in assistant_text:
if '</ask>' in assistant_text:
xml_tool = 'ask'
elif '</complete>' in assistant_text:
xml_tool = 'complete'
elif '</web-browser-takeover>' in assistant_text:
xml_tool = 'web-browser-takeover'
last_tool_call = xml_tool
except json.JSONDecodeError:
pass
except Exception:
pass
yield chunk
else:
error_detected = True
if error_detected:
if generation:
generation.end(output=full_response, status_message="error_detected", level="ERROR")
break
if agent_should_terminate or last_tool_call in ['ask', 'complete', 'web-browser-takeover']:
if generation:
generation.end(output=full_response, status_message="agent_stopped")
continue_execution = False
except Exception as e:
error_msg = f"Error during response streaming: {str(e)}"
if generation:
generation.end(output=full_response, status_message=error_msg, level="ERROR")
yield {
"type": "status",
"status": "error",
"message": error_msg
}
break
except Exception as e:
error_msg = f"Error running thread: {str(e)}"
yield {
"type": "status",
"status": "error",
"message": error_msg
}
break
if generation:
generation.end(output=full_response)
asyncio.create_task(asyncio.to_thread(lambda: langfuse.flush()))
async def run_agent(
thread_id: str,
project_id: str,
stream: bool,
thread_manager: Optional[ThreadManager] = None,
native_max_auto_continues: int = 25,
max_iterations: int = 100,
model_name: str = "openai/gpt-5-mini",
enable_thinking: Optional[bool] = False,
reasoning_effort: Optional[str] = 'low',
enable_context_manager: bool = True,
agent_config: Optional[dict] = None,
trace: Optional[StatefulTraceClient] = None
):
effective_model = model_name
is_tier_default = model_name in ["Kimi K2", "Claude Sonnet 4", "openai/gpt-5-mini"]
if is_tier_default and agent_config and agent_config.get('model'):
effective_model = agent_config['model']
logger.debug(f"Using model from agent config: {effective_model} (tier default was {model_name})")
elif not is_tier_default:
logger.debug(f"Using user-selected model: {effective_model}")
else:
logger.debug(f"Using tier default model: {effective_model}")
config = AgentConfig(
thread_id=thread_id,
project_id=project_id,
stream=stream,
native_max_auto_continues=native_max_auto_continues,
max_iterations=max_iterations,
model_name=effective_model,
enable_thinking=enable_thinking,
reasoning_effort=reasoning_effort,
enable_context_manager=enable_context_manager,
agent_config=agent_config,
trace=trace
)
runner = AgentRunner(config)
async for chunk in runner.run():
yield chunk