mirror of https://github.com/kortix-ai/suna.git
817 lines
42 KiB
Python
817 lines
42 KiB
Python
import os
|
||
import json
|
||
import re
|
||
from uuid import uuid4
|
||
from typing import Optional
|
||
|
||
# from agent.tools.message_tool import MessageTool
|
||
from agent.tools.message_tool import MessageTool
|
||
from agent.tools.sb_deploy_tool import SandboxDeployTool
|
||
from agent.tools.sb_expose_tool import SandboxExposeTool
|
||
from agent.tools.web_search_tool import SandboxWebSearchTool
|
||
from dotenv import load_dotenv
|
||
from utils.config import config
|
||
|
||
from agentpress.thread_manager import ThreadManager
|
||
from agentpress.response_processor import ProcessorConfig
|
||
from agent.tools.sb_shell_tool import SandboxShellTool
|
||
from agent.tools.sb_files_tool import SandboxFilesTool
|
||
from agent.tools.sb_browser_tool import SandboxBrowserTool
|
||
from agent.tools.data_providers_tool import DataProvidersTool
|
||
from agent.prompt import get_system_prompt
|
||
from utils.logger import logger
|
||
from utils.auth_utils import get_account_id_from_thread
|
||
from services.billing import check_billing_status
|
||
from agent.tools.sb_vision_tool import SandboxVisionTool
|
||
from services.langfuse import langfuse
|
||
from langfuse.client import StatefulTraceClient
|
||
from services.langfuse import langfuse
|
||
from agent.gemini_prompt import get_gemini_system_prompt
|
||
from agent.tools.mcp_tool_wrapper import MCPToolWrapper
|
||
from agentpress.tool import SchemaType
|
||
|
||
load_dotenv()
|
||
|
||
async def run_agent(
|
||
thread_id: str,
|
||
project_id: str,
|
||
stream: bool,
|
||
thread_manager: Optional[ThreadManager] = None,
|
||
native_max_auto_continues: int = 25,
|
||
max_iterations: int = 100,
|
||
model_name: str = "anthropic/claude-3-7-sonnet-latest",
|
||
enable_thinking: Optional[bool] = False,
|
||
reasoning_effort: Optional[str] = 'low',
|
||
enable_context_manager: bool = True,
|
||
agent_config: Optional[dict] = None,
|
||
trace: Optional[StatefulTraceClient] = None,
|
||
is_agent_builder: Optional[bool] = False
|
||
):
|
||
"""Run the development agent with specified configuration."""
|
||
logger.info(f"🚀 Starting agent with model: {model_name}")
|
||
if agent_config:
|
||
logger.info(f"Using custom agent: {agent_config.get('name', 'Unknown')}")
|
||
|
||
if not trace:
|
||
trace = langfuse.trace(name="run_agent", session_id=thread_id, metadata={"project_id": project_id})
|
||
thread_manager = ThreadManager(trace=trace)
|
||
|
||
client = await thread_manager.db.client
|
||
|
||
# Get account ID from thread for billing checks
|
||
account_id = await get_account_id_from_thread(client, thread_id)
|
||
if not account_id:
|
||
raise ValueError("Could not determine account ID for thread")
|
||
|
||
# Get sandbox info from project
|
||
project = await client.table('projects').select('*').eq('project_id', project_id).execute()
|
||
if not project.data or len(project.data) == 0:
|
||
raise ValueError(f"Project {project_id} not found")
|
||
|
||
project_data = project.data[0]
|
||
sandbox_info = project_data.get('sandbox', {})
|
||
if not sandbox_info.get('id'):
|
||
raise ValueError(f"No sandbox found for project {project_id}")
|
||
|
||
# Initialize tools with project_id instead of sandbox object
|
||
# This ensures each tool independently verifies it's operating on the correct project
|
||
|
||
# Get enabled tools from agent config, or use defaults
|
||
enabled_tools = None
|
||
if agent_config and 'agentpress_tools' in agent_config:
|
||
enabled_tools = agent_config['agentpress_tools']
|
||
logger.info(f"Using custom tool configuration from agent")
|
||
|
||
# Register tools based on configuration
|
||
# If no agent config (enabled_tools is None), register ALL tools for full Suna capabilities
|
||
# If agent config exists, only register explicitly enabled tools
|
||
if is_agent_builder:
|
||
logger.info("Agent builder mode - registering only update agent tool")
|
||
from agent.tools.update_agent_tool import UpdateAgentTool
|
||
from services.supabase import DBConnection
|
||
db = DBConnection()
|
||
target_agent_id = agent_config.get('target_agent_id') if agent_config else None
|
||
update_tool = UpdateAgentTool(db, target_agent_id)
|
||
|
||
if enabled_tools is None:
|
||
# No agent specified - register ALL tools for full Suna experience
|
||
logger.info("No agent specified - registering all tools for full Suna capabilities")
|
||
thread_manager.add_tool(SandboxShellTool, project_id=project_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxFilesTool, project_id=project_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxBrowserTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxDeployTool, project_id=project_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxExposeTool, project_id=project_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(MessageTool)
|
||
thread_manager.add_tool(SandboxWebSearchTool, project_id=project_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxVisionTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
|
||
if config.RAPID_API_KEY:
|
||
thread_manager.add_tool(DataProvidersTool)
|
||
else:
|
||
# Agent specified - only register explicitly enabled tools
|
||
logger.info("Custom agent specified - registering only enabled tools")
|
||
if enabled_tools.get('sb_shell_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxShellTool, project_id=project_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('sb_files_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxFilesTool, project_id=project_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('sb_browser_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxBrowserTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('sb_deploy_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxDeployTool, project_id=project_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('sb_expose_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxExposeTool, project_id=project_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('message_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(MessageTool)
|
||
if enabled_tools.get('web_search_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxWebSearchTool, project_id=project_id, thread_manager=thread_manager)
|
||
if enabled_tools.get('sb_vision_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(SandboxVisionTool, project_id=project_id, thread_id=thread_id, thread_manager=thread_manager)
|
||
if config.RAPID_API_KEY and enabled_tools.get('data_providers_tool', {}).get('enabled', False):
|
||
thread_manager.add_tool(DataProvidersTool)
|
||
|
||
# Register MCP tool wrapper if agent has configured MCPs
|
||
mcp_wrapper_instance = None
|
||
if agent_config and agent_config.get('configured_mcps'):
|
||
logger.info(f"Registering MCP tool wrapper for {len(agent_config['configured_mcps'])} MCP servers")
|
||
# Register the tool
|
||
thread_manager.add_tool(MCPToolWrapper, mcp_configs=agent_config['configured_mcps'])
|
||
|
||
# Get the tool instance from the registry
|
||
# The tool is registered with method names as keys
|
||
for tool_name, tool_info in thread_manager.tool_registry.tools.items():
|
||
if isinstance(tool_info['instance'], MCPToolWrapper):
|
||
mcp_wrapper_instance = tool_info['instance']
|
||
break
|
||
|
||
# Initialize the MCP tools asynchronously
|
||
if mcp_wrapper_instance:
|
||
try:
|
||
await mcp_wrapper_instance.initialize_and_register_tools()
|
||
logger.info("MCP tools initialized successfully")
|
||
|
||
# Re-register the updated schemas with the tool registry
|
||
# This ensures the dynamically created tools are available for function calling
|
||
updated_schemas = mcp_wrapper_instance.get_schemas()
|
||
for method_name, schema_list in updated_schemas.items():
|
||
if method_name != 'call_mcp_tool': # Skip the fallback method
|
||
# Register each dynamic tool in the registry
|
||
for schema in schema_list:
|
||
if schema.schema_type == SchemaType.OPENAPI:
|
||
thread_manager.tool_registry.tools[method_name] = {
|
||
"instance": mcp_wrapper_instance,
|
||
"schema": schema
|
||
}
|
||
logger.debug(f"Registered dynamic MCP tool: {method_name}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to initialize MCP tools: {e}")
|
||
# Continue without MCP tools if initialization fails
|
||
|
||
# Prepare system prompt
|
||
# First, get the default system prompt
|
||
if "gemini-2.5-flash" in model_name.lower():
|
||
default_system_content = get_gemini_system_prompt()
|
||
else:
|
||
# Use the original prompt - the LLM can only use tools that are registered
|
||
default_system_content = get_system_prompt()
|
||
|
||
# Add sample response for non-anthropic models
|
||
if "anthropic" not in model_name.lower():
|
||
sample_response_path = os.path.join(os.path.dirname(__file__), 'sample_responses/1.txt')
|
||
with open(sample_response_path, 'r') as file:
|
||
sample_response = file.read()
|
||
default_system_content = default_system_content + "\n\n <sample_assistant_response>" + sample_response + "</sample_assistant_response>"
|
||
|
||
# Handle custom agent system prompt
|
||
if agent_config and agent_config.get('system_prompt'):
|
||
custom_system_prompt = agent_config['system_prompt'].strip()
|
||
|
||
# Completely replace the default system prompt with the custom one
|
||
# This prevents confusion and tool hallucination
|
||
system_content = custom_system_prompt
|
||
logger.info(f"Using ONLY custom agent system prompt for: {agent_config.get('name', 'Unknown')}")
|
||
else:
|
||
# Use just the default system prompt
|
||
system_content = default_system_content
|
||
logger.info("Using default system prompt only")
|
||
|
||
# Add MCP tool information to system prompt if MCP tools are configured
|
||
if agent_config and agent_config.get('configured_mcps') and mcp_wrapper_instance and mcp_wrapper_instance._initialized:
|
||
mcp_info = "\n\n--- MCP Tools Available ---\n"
|
||
mcp_info += "You have access to external MCP (Model Context Protocol) server tools.\n"
|
||
mcp_info += "MCP tools can be called directly using their native function names in the standard function calling format:\n"
|
||
mcp_info += '<function_calls>\n'
|
||
mcp_info += '<invoke name="{tool_name}">\n'
|
||
mcp_info += '<parameter name="param1">value1</parameter>\n'
|
||
mcp_info += '<parameter name="param2">value2</parameter>\n'
|
||
mcp_info += '</invoke>\n'
|
||
mcp_info += '</function_calls>\n\n'
|
||
|
||
# List available MCP tools
|
||
mcp_info += "Available MCP tools:\n"
|
||
try:
|
||
# Get the actual registered schemas from the wrapper
|
||
registered_schemas = mcp_wrapper_instance.get_schemas()
|
||
for method_name, schema_list in registered_schemas.items():
|
||
if method_name == 'call_mcp_tool':
|
||
continue # Skip the fallback method
|
||
|
||
# Get the schema info
|
||
for schema in schema_list:
|
||
if schema.schema_type == SchemaType.OPENAPI:
|
||
func_info = schema.schema.get('function', {})
|
||
description = func_info.get('description', 'No description available')
|
||
# Extract server name from description if available
|
||
server_match = description.find('(MCP Server: ')
|
||
if server_match != -1:
|
||
server_end = description.find(')', server_match)
|
||
server_info = description[server_match:server_end+1]
|
||
else:
|
||
server_info = ''
|
||
|
||
mcp_info += f"- **{method_name}**: {description}\n"
|
||
|
||
# Show parameter info
|
||
params = func_info.get('parameters', {})
|
||
props = params.get('properties', {})
|
||
if props:
|
||
mcp_info += f" Parameters: {', '.join(props.keys())}\n"
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error listing MCP tools: {e}")
|
||
mcp_info += "- Error loading MCP tool list\n"
|
||
|
||
# Add critical instructions for using search results
|
||
mcp_info += "\n🚨 CRITICAL MCP TOOL RESULT INSTRUCTIONS 🚨\n"
|
||
mcp_info += "When you use ANY MCP (Model Context Protocol) tools:\n"
|
||
mcp_info += "1. ALWAYS read and use the EXACT results returned by the MCP tool\n"
|
||
mcp_info += "2. For search tools: ONLY cite URLs, sources, and information from the actual search results\n"
|
||
mcp_info += "3. For any tool: Base your response entirely on the tool's output - do NOT add external information\n"
|
||
mcp_info += "4. DO NOT fabricate, invent, hallucinate, or make up any sources, URLs, or data\n"
|
||
mcp_info += "5. If you need more information, call the MCP tool again with different parameters\n"
|
||
mcp_info += "6. When writing reports/summaries: Reference ONLY the data from MCP tool results\n"
|
||
mcp_info += "7. If the MCP tool doesn't return enough information, explicitly state this limitation\n"
|
||
mcp_info += "8. Always double-check that every fact, URL, and reference comes from the MCP tool output\n"
|
||
mcp_info += "\nIMPORTANT: MCP tool results are your PRIMARY and ONLY source of truth for external data!\n"
|
||
mcp_info += "NEVER supplement MCP results with your training data or make assumptions beyond what the tools provide.\n"
|
||
|
||
system_content += mcp_info
|
||
|
||
system_message = { "role": "system", "content": system_content }
|
||
|
||
iteration_count = 0
|
||
continue_execution = True
|
||
|
||
latest_user_message = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'user').order('created_at', desc=True).limit(1).execute()
|
||
if latest_user_message.data and len(latest_user_message.data) > 0:
|
||
data = json.loads(latest_user_message.data[0]['content'])
|
||
trace.update(input=data['content'])
|
||
|
||
while continue_execution and iteration_count < max_iterations:
|
||
iteration_count += 1
|
||
logger.info(f"🔄 Running iteration {iteration_count} of {max_iterations}...")
|
||
|
||
# Billing check on each iteration - still needed within the iterations
|
||
can_run, message, subscription = await check_billing_status(client, account_id)
|
||
if not can_run:
|
||
error_msg = f"Billing limit reached: {message}"
|
||
trace.event(name="billing_limit_reached", level="ERROR", status_message=(f"{error_msg}"))
|
||
# Yield a special message to indicate billing limit reached
|
||
yield {
|
||
"type": "status",
|
||
"status": "stopped",
|
||
"message": error_msg
|
||
}
|
||
break
|
||
# Check if last message is from assistant using direct Supabase query
|
||
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
|
||
if latest_message.data and len(latest_message.data) > 0:
|
||
message_type = latest_message.data[0].get('type')
|
||
if message_type == 'assistant':
|
||
logger.info(f"Last message was from assistant, stopping execution")
|
||
trace.event(name="last_message_from_assistant", level="DEFAULT", status_message=(f"Last message was from assistant, stopping execution"))
|
||
continue_execution = False
|
||
break
|
||
|
||
# ---- Temporary Message Handling (Browser State & Image Context) ----
|
||
temporary_message = None
|
||
temp_message_content_list = [] # List to hold text/image blocks
|
||
|
||
# Get the latest browser_state message
|
||
latest_browser_state_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
|
||
if latest_browser_state_msg.data and len(latest_browser_state_msg.data) > 0:
|
||
try:
|
||
browser_content = json.loads(latest_browser_state_msg.data[0]["content"])
|
||
screenshot_base64 = browser_content.get("screenshot_base64")
|
||
screenshot_url = browser_content.get("screenshot_url")
|
||
|
||
# Create a copy of the browser state without screenshot data
|
||
browser_state_text = browser_content.copy()
|
||
browser_state_text.pop('screenshot_base64', None)
|
||
browser_state_text.pop('screenshot_url', None)
|
||
|
||
if browser_state_text:
|
||
temp_message_content_list.append({
|
||
"type": "text",
|
||
"text": f"The following is the current state of the browser:\n{json.dumps(browser_state_text, indent=2)}"
|
||
})
|
||
|
||
# Prioritize screenshot_url if available
|
||
if screenshot_url:
|
||
temp_message_content_list.append({
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": screenshot_url,
|
||
}
|
||
})
|
||
elif screenshot_base64:
|
||
# Fallback to base64 if URL not available
|
||
temp_message_content_list.append({
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": f"data:image/jpeg;base64,{screenshot_base64}",
|
||
}
|
||
})
|
||
else:
|
||
logger.warning("Browser state found but no screenshot data.")
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error parsing browser state: {e}")
|
||
trace.event(name="error_parsing_browser_state", level="ERROR", status_message=(f"{e}"))
|
||
|
||
# Get the latest image_context message (NEW)
|
||
latest_image_context_msg = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'image_context').order('created_at', desc=True).limit(1).execute()
|
||
if latest_image_context_msg.data and len(latest_image_context_msg.data) > 0:
|
||
try:
|
||
image_context_content = json.loads(latest_image_context_msg.data[0]["content"])
|
||
base64_image = image_context_content.get("base64")
|
||
mime_type = image_context_content.get("mime_type")
|
||
file_path = image_context_content.get("file_path", "unknown file")
|
||
|
||
if base64_image and mime_type:
|
||
temp_message_content_list.append({
|
||
"type": "text",
|
||
"text": f"Here is the image you requested to see: '{file_path}'"
|
||
})
|
||
temp_message_content_list.append({
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": f"data:{mime_type};base64,{base64_image}",
|
||
}
|
||
})
|
||
else:
|
||
logger.warning(f"Image context found for '{file_path}' but missing base64 or mime_type.")
|
||
|
||
await client.table('messages').delete().eq('message_id', latest_image_context_msg.data[0]["message_id"]).execute()
|
||
except Exception as e:
|
||
logger.error(f"Error parsing image context: {e}")
|
||
trace.event(name="error_parsing_image_context", level="ERROR", status_message=(f"{e}"))
|
||
|
||
# If we have any content, construct the temporary_message
|
||
if temp_message_content_list:
|
||
temporary_message = {"role": "user", "content": temp_message_content_list}
|
||
# logger.debug(f"Constructed temporary message with {len(temp_message_content_list)} content blocks.")
|
||
# ---- End Temporary Message Handling ----
|
||
|
||
# Set max_tokens based on model
|
||
max_tokens = None
|
||
if "sonnet" in model_name.lower():
|
||
max_tokens = 64000
|
||
elif "gpt-4" in model_name.lower():
|
||
max_tokens = 4096
|
||
|
||
generation = trace.generation(name="thread_manager.run_thread")
|
||
try:
|
||
# Make the LLM call and process the response
|
||
response = await thread_manager.run_thread(
|
||
thread_id=thread_id,
|
||
system_prompt=system_message,
|
||
stream=stream,
|
||
llm_model=model_name,
|
||
llm_temperature=0,
|
||
llm_max_tokens=max_tokens,
|
||
tool_choice="auto",
|
||
max_xml_tool_calls=1,
|
||
temporary_message=temporary_message,
|
||
processor_config=ProcessorConfig(
|
||
xml_tool_calling=True,
|
||
native_tool_calling=False,
|
||
execute_tools=True,
|
||
execute_on_stream=True,
|
||
tool_execution_strategy="parallel",
|
||
xml_adding_strategy="user_message"
|
||
),
|
||
native_max_auto_continues=native_max_auto_continues,
|
||
include_xml_examples=True,
|
||
enable_thinking=enable_thinking,
|
||
reasoning_effort=reasoning_effort,
|
||
enable_context_manager=enable_context_manager,
|
||
generation=generation
|
||
)
|
||
|
||
if isinstance(response, dict) and "status" in response and response["status"] == "error":
|
||
logger.error(f"Error response from run_thread: {response.get('message', 'Unknown error')}")
|
||
trace.event(name="error_response_from_run_thread", level="ERROR", status_message=(f"{response.get('message', 'Unknown error')}"))
|
||
yield response
|
||
break
|
||
|
||
# Track if we see ask, complete, or web-browser-takeover tool calls
|
||
last_tool_call = None
|
||
agent_should_terminate = False
|
||
|
||
# Process the response
|
||
error_detected = False
|
||
try:
|
||
full_response = ""
|
||
async for chunk in response:
|
||
# If we receive an error chunk, we should stop after this iteration
|
||
if isinstance(chunk, dict) and chunk.get('type') == 'status' and chunk.get('status') == 'error':
|
||
logger.error(f"Error chunk detected: {chunk.get('message', 'Unknown error')}")
|
||
trace.event(name="error_chunk_detected", level="ERROR", status_message=(f"{chunk.get('message', 'Unknown error')}"))
|
||
error_detected = True
|
||
yield chunk # Forward the error chunk
|
||
continue # Continue processing other chunks but don't break yet
|
||
|
||
# Check for termination signal in status messages
|
||
if chunk.get('type') == 'status':
|
||
try:
|
||
# Parse the metadata to check for termination signal
|
||
metadata = chunk.get('metadata', {})
|
||
if isinstance(metadata, str):
|
||
metadata = json.loads(metadata)
|
||
|
||
if metadata.get('agent_should_terminate'):
|
||
agent_should_terminate = True
|
||
logger.info("Agent termination signal detected in status message")
|
||
trace.event(name="agent_termination_signal_detected", level="DEFAULT", status_message="Agent termination signal detected in status message")
|
||
|
||
# Extract the tool name from the status content if available
|
||
content = chunk.get('content', {})
|
||
if isinstance(content, str):
|
||
content = json.loads(content)
|
||
|
||
if content.get('function_name'):
|
||
last_tool_call = content['function_name']
|
||
elif content.get('xml_tag_name'):
|
||
last_tool_call = content['xml_tag_name']
|
||
|
||
except Exception as e:
|
||
logger.debug(f"Error parsing status message for termination check: {e}")
|
||
|
||
# Check for XML versions like <ask>, <complete>, or <web-browser-takeover> in assistant content chunks
|
||
if chunk.get('type') == 'assistant' and 'content' in chunk:
|
||
try:
|
||
# The content field might be a JSON string or object
|
||
content = chunk.get('content', '{}')
|
||
if isinstance(content, str):
|
||
assistant_content_json = json.loads(content)
|
||
else:
|
||
assistant_content_json = content
|
||
|
||
# The actual text content is nested within
|
||
assistant_text = assistant_content_json.get('content', '')
|
||
full_response += assistant_text
|
||
if isinstance(assistant_text, str):
|
||
if '</ask>' in assistant_text or '</complete>' in assistant_text or '</web-browser-takeover>' in assistant_text:
|
||
if '</ask>' in assistant_text:
|
||
xml_tool = 'ask'
|
||
elif '</complete>' in assistant_text:
|
||
xml_tool = 'complete'
|
||
elif '</web-browser-takeover>' in assistant_text:
|
||
xml_tool = 'web-browser-takeover'
|
||
|
||
last_tool_call = xml_tool
|
||
logger.info(f"Agent used XML tool: {xml_tool}")
|
||
trace.event(name="agent_used_xml_tool", level="DEFAULT", status_message=(f"Agent used XML tool: {xml_tool}"))
|
||
except json.JSONDecodeError:
|
||
# Handle cases where content might not be valid JSON
|
||
logger.warning(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}")
|
||
trace.event(name="warning_could_not_parse_assistant_content_json", level="WARNING", status_message=(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}"))
|
||
except Exception as e:
|
||
logger.error(f"Error processing assistant chunk: {e}")
|
||
trace.event(name="error_processing_assistant_chunk", level="ERROR", status_message=(f"Error processing assistant chunk: {e}"))
|
||
|
||
yield chunk
|
||
|
||
# Check if we should stop based on the last tool call or error
|
||
if error_detected:
|
||
logger.info(f"Stopping due to error detected in response")
|
||
trace.event(name="stopping_due_to_error_detected_in_response", level="DEFAULT", status_message=(f"Stopping due to error detected in response"))
|
||
generation.end(output=full_response, status_message="error_detected", level="ERROR")
|
||
break
|
||
|
||
if agent_should_terminate or last_tool_call in ['ask', 'complete', 'web-browser-takeover']:
|
||
logger.info(f"Agent decided to stop with tool: {last_tool_call}")
|
||
trace.event(name="agent_decided_to_stop_with_tool", level="DEFAULT", status_message=(f"Agent decided to stop with tool: {last_tool_call}"))
|
||
generation.end(output=full_response, status_message="agent_stopped")
|
||
continue_execution = False
|
||
|
||
except Exception as e:
|
||
# Just log the error and re-raise to stop all iterations
|
||
error_msg = f"Error during response streaming: {str(e)}"
|
||
logger.error(f"Error: {error_msg}")
|
||
trace.event(name="error_during_response_streaming", level="ERROR", status_message=(f"Error during response streaming: {str(e)}"))
|
||
generation.end(output=full_response, status_message=error_msg, level="ERROR")
|
||
yield {
|
||
"type": "status",
|
||
"status": "error",
|
||
"message": error_msg
|
||
}
|
||
# Stop execution immediately on any error
|
||
break
|
||
|
||
except Exception as e:
|
||
# Just log the error and re-raise to stop all iterations
|
||
error_msg = f"Error running thread: {str(e)}"
|
||
logger.error(f"Error: {error_msg}")
|
||
trace.event(name="error_running_thread", level="ERROR", status_message=(f"Error running thread: {str(e)}"))
|
||
yield {
|
||
"type": "status",
|
||
"status": "error",
|
||
"message": error_msg
|
||
}
|
||
# Stop execution immediately on any error
|
||
break
|
||
generation.end(output=full_response)
|
||
|
||
langfuse.flush() # Flush Langfuse events at the end of the run
|
||
|
||
|
||
|
||
# # TESTING
|
||
|
||
# async def test_agent():
|
||
# """Test function to run the agent with a sample query"""
|
||
# from agentpress.thread_manager import ThreadManager
|
||
# from services.supabase import DBConnection
|
||
|
||
# # Initialize ThreadManager
|
||
# thread_manager = ThreadManager()
|
||
|
||
# # Create a test thread directly with Postgres function
|
||
# client = await DBConnection().client
|
||
|
||
# try:
|
||
# # Get user's personal account
|
||
# account_result = await client.rpc('get_personal_account').execute()
|
||
|
||
# # if not account_result.data:
|
||
# # print("Error: No personal account found")
|
||
# # return
|
||
|
||
# account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"
|
||
|
||
# if not account_id:
|
||
# print("Error: Could not get account ID")
|
||
# return
|
||
|
||
# # Find or create a test project in the user's account
|
||
# project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()
|
||
|
||
# if project_result.data and len(project_result.data) > 0:
|
||
# # Use existing test project
|
||
# project_id = project_result.data[0]['project_id']
|
||
# print(f"\n🔄 Using existing test project: {project_id}")
|
||
# else:
|
||
# # Create new test project if none exists
|
||
# project_result = await client.table('projects').insert({
|
||
# "name": "test11",
|
||
# "account_id": account_id
|
||
# }).execute()
|
||
# project_id = project_result.data[0]['project_id']
|
||
# print(f"\n✨ Created new test project: {project_id}")
|
||
|
||
# # Create a thread for this project
|
||
# thread_result = await client.table('threads').insert({
|
||
# 'project_id': project_id,
|
||
# 'account_id': account_id
|
||
# }).execute()
|
||
# thread_data = thread_result.data[0] if thread_result.data else None
|
||
|
||
# if not thread_data:
|
||
# print("Error: No thread data returned")
|
||
# return
|
||
|
||
# thread_id = thread_data['thread_id']
|
||
# except Exception as e:
|
||
# print(f"Error setting up thread: {str(e)}")
|
||
# return
|
||
|
||
# print(f"\n🤖 Agent Thread Created: {thread_id}\n")
|
||
|
||
# # Interactive message input loop
|
||
# while True:
|
||
# # Get user input
|
||
# user_message = input("\n💬 Enter your message (or 'exit' to quit): ")
|
||
# if user_message.lower() == 'exit':
|
||
# break
|
||
|
||
# if not user_message.strip():
|
||
# print("\n🔄 Running agent...\n")
|
||
# await process_agent_response(thread_id, project_id, thread_manager)
|
||
# continue
|
||
|
||
# # Add the user message to the thread
|
||
# await thread_manager.add_message(
|
||
# thread_id=thread_id,
|
||
# type="user",
|
||
# content={
|
||
# "role": "user",
|
||
# "content": user_message
|
||
# },
|
||
# is_llm_message=True
|
||
# )
|
||
|
||
# print("\n🔄 Running agent...\n")
|
||
# await process_agent_response(thread_id, project_id, thread_manager)
|
||
|
||
# print("\n👋 Test completed. Goodbye!")
|
||
|
||
# async def process_agent_response(
|
||
# thread_id: str,
|
||
# project_id: str,
|
||
# thread_manager: ThreadManager,
|
||
# stream: bool = True,
|
||
# model_name: str = "anthropic/claude-3-7-sonnet-latest",
|
||
# enable_thinking: Optional[bool] = False,
|
||
# reasoning_effort: Optional[str] = 'low',
|
||
# enable_context_manager: bool = True
|
||
# ):
|
||
# """Process the streaming response from the agent."""
|
||
# chunk_counter = 0
|
||
# current_response = ""
|
||
# tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status
|
||
|
||
# # Create a test sandbox for processing with a unique test prefix to avoid conflicts with production sandboxes
|
||
# sandbox_pass = str(uuid4())
|
||
# sandbox = create_sandbox(sandbox_pass)
|
||
|
||
# # Store the original ID so we can refer to it
|
||
# original_sandbox_id = sandbox.id
|
||
|
||
# # Generate a clear test identifier
|
||
# test_prefix = f"test_{uuid4().hex[:8]}_"
|
||
# logger.info(f"Created test sandbox with ID {original_sandbox_id} and test prefix {test_prefix}")
|
||
|
||
# # Log the sandbox URL for debugging
|
||
# print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")
|
||
|
||
# async for chunk in run_agent(
|
||
# thread_id=thread_id,
|
||
# project_id=project_id,
|
||
# sandbox=sandbox,
|
||
# stream=stream,
|
||
# thread_manager=thread_manager,
|
||
# native_max_auto_continues=25,
|
||
# model_name=model_name,
|
||
# enable_thinking=enable_thinking,
|
||
# reasoning_effort=reasoning_effort,
|
||
# enable_context_manager=enable_context_manager
|
||
# ):
|
||
# chunk_counter += 1
|
||
# # print(f"CHUNK: {chunk}") # Uncomment for debugging
|
||
|
||
# if chunk.get('type') == 'assistant':
|
||
# # Try parsing the content JSON
|
||
# try:
|
||
# # Handle content as string or object
|
||
# content = chunk.get('content', '{}')
|
||
# if isinstance(content, str):
|
||
# content_json = json.loads(content)
|
||
# else:
|
||
# content_json = content
|
||
|
||
# actual_content = content_json.get('content', '')
|
||
# # Print the actual assistant text content as it comes
|
||
# if actual_content:
|
||
# # Check if it contains XML tool tags, if so, print the whole tag for context
|
||
# if '<' in actual_content and '>' in actual_content:
|
||
# # Avoid printing potentially huge raw content if it's not just text
|
||
# if len(actual_content) < 500: # Heuristic limit
|
||
# print(actual_content, end='', flush=True)
|
||
# else:
|
||
# # Maybe just print a summary if it's too long or contains complex XML
|
||
# if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True)
|
||
# elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True)
|
||
# else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case
|
||
# else:
|
||
# # Regular text content
|
||
# print(actual_content, end='', flush=True)
|
||
# current_response += actual_content # Accumulate only text part
|
||
# except json.JSONDecodeError:
|
||
# # If content is not JSON (e.g., just a string chunk), print directly
|
||
# raw_content = chunk.get('content', '')
|
||
# print(raw_content, end='', flush=True)
|
||
# current_response += raw_content
|
||
# except Exception as e:
|
||
# print(f"\nError processing assistant chunk: {e}\n")
|
||
|
||
# elif chunk.get('type') == 'tool': # Updated from 'tool_result'
|
||
# # Add timestamp and format tool result nicely
|
||
# tool_name = "UnknownTool" # Try to get from metadata if available
|
||
# result_content = "No content"
|
||
|
||
# # Parse metadata - handle both string and dict formats
|
||
# metadata = chunk.get('metadata', {})
|
||
# if isinstance(metadata, str):
|
||
# try:
|
||
# metadata = json.loads(metadata)
|
||
# except json.JSONDecodeError:
|
||
# metadata = {}
|
||
|
||
# linked_assistant_msg_id = metadata.get('assistant_message_id')
|
||
# parsing_details = metadata.get('parsing_details')
|
||
# if parsing_details:
|
||
# tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details
|
||
|
||
# try:
|
||
# # Content is a JSON string or object
|
||
# content = chunk.get('content', '{}')
|
||
# if isinstance(content, str):
|
||
# content_json = json.loads(content)
|
||
# else:
|
||
# content_json = content
|
||
|
||
# # The actual tool result is nested inside content.content
|
||
# tool_result_str = content_json.get('content', '')
|
||
# # Extract the actual tool result string (remove outer <tool_result> tag if present)
|
||
# match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL)
|
||
# if match:
|
||
# result_content = match.group(1).strip()
|
||
# # Try to parse the result string itself as JSON for pretty printing
|
||
# try:
|
||
# result_obj = json.loads(result_content)
|
||
# result_content = json.dumps(result_obj, indent=2)
|
||
# except json.JSONDecodeError:
|
||
# # Keep as string if not JSON
|
||
# pass
|
||
# else:
|
||
# # Fallback if tag extraction fails
|
||
# result_content = tool_result_str
|
||
|
||
# except json.JSONDecodeError:
|
||
# result_content = chunk.get('content', 'Error parsing tool content')
|
||
# except Exception as e:
|
||
# result_content = f"Error processing tool chunk: {e}"
|
||
|
||
# print(f"\n\n🛠️ TOOL RESULT [{tool_name}] → {result_content}")
|
||
|
||
# elif chunk.get('type') == 'status':
|
||
# # Log tool status changes
|
||
# try:
|
||
# # Handle content as string or object
|
||
# status_content = chunk.get('content', '{}')
|
||
# if isinstance(status_content, str):
|
||
# status_content = json.loads(status_content)
|
||
|
||
# status_type = status_content.get('status_type')
|
||
# function_name = status_content.get('function_name', '')
|
||
# xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
|
||
# tool_name = xml_tag_name or function_name # Prefer XML tag name
|
||
|
||
# if status_type == 'tool_started' and tool_name:
|
||
# tool_usage_counter += 1
|
||
# print(f"\n⏳ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
|
||
# print(" " + "-" * 40)
|
||
# # Return to the current content display
|
||
# if current_response:
|
||
# print("\nContinuing response:", flush=True)
|
||
# print(current_response, end='', flush=True)
|
||
# elif status_type == 'tool_completed' and tool_name:
|
||
# status_emoji = "✅"
|
||
# print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
|
||
# elif status_type == 'finish':
|
||
# finish_reason = status_content.get('finish_reason', '')
|
||
# if finish_reason:
|
||
# print(f"\n📌 Finished: {finish_reason}")
|
||
# # else: # Print other status types if needed for debugging
|
||
# # print(f"\nℹ️ STATUS: {chunk.get('content')}")
|
||
|
||
# except json.JSONDecodeError:
|
||
# print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
|
||
# except Exception as e:
|
||
# print(f"\nError processing status chunk: {e}")
|
||
|
||
|
||
# # Removed elif chunk.get('type') == 'tool_call': block
|
||
|
||
# # Update final message
|
||
# print(f"\n\n✅ Agent run completed with {tool_usage_counter} tool executions")
|
||
|
||
# # Try to clean up the test sandbox if possible
|
||
# try:
|
||
# # Attempt to delete/archive the sandbox to clean up resources
|
||
# # Note: Actual deletion may depend on the Daytona SDK's capabilities
|
||
# logger.info(f"Attempting to clean up test sandbox {original_sandbox_id}")
|
||
# # If there's a method to archive/delete the sandbox, call it here
|
||
# # Example: daytona.archive_sandbox(sandbox.id)
|
||
# except Exception as e:
|
||
# logger.warning(f"Failed to clean up test sandbox {original_sandbox_id}: {str(e)}")
|
||
|
||
# if __name__ == "__main__":
|
||
# import asyncio
|
||
|
||
# # Configure any environment variables or setup needed for testing
|
||
# load_dotenv() # Ensure environment variables are loaded
|
||
|
||
# # Run the test function
|
||
# asyncio.run(test_agent()) |