mirror of https://github.com/kortix-ai/suna.git
1684 lines
98 KiB
Python
1684 lines
98 KiB
Python
"""
|
||
Response processing module for AgentPress.
|
||
|
||
This module handles the processing of LLM responses, including:
|
||
- Streaming and non-streaming response handling
|
||
- XML and native tool call detection and parsing
|
||
- Tool execution orchestration
|
||
- Message formatting and persistence
|
||
"""
|
||
|
||
import json
|
||
import re
|
||
import uuid
|
||
import asyncio
|
||
from datetime import datetime, timezone
|
||
from typing import List, Dict, Any, Optional, AsyncGenerator, Tuple, Union, Callable, Literal
|
||
from dataclasses import dataclass
|
||
from utils.logger import logger
|
||
from agentpress.tool import ToolResult
|
||
from agentpress.tool_registry import ToolRegistry
|
||
from agentpress.xml_tool_parser import XMLToolParser
|
||
from langfuse.client import StatefulTraceClient
|
||
from services.langfuse import langfuse
|
||
from utils.json_helpers import (
|
||
ensure_dict, ensure_list, safe_json_parse,
|
||
to_json_string, format_for_yield
|
||
)
|
||
from litellm.utils import token_counter
|
||
|
||
# Type alias for XML result adding strategy
|
||
XmlAddingStrategy = Literal["user_message", "assistant_message", "inline_edit"]
|
||
|
||
# Type alias for tool execution strategy
|
||
ToolExecutionStrategy = Literal["sequential", "parallel"]
|
||
|
||
@dataclass
|
||
class ToolExecutionContext:
|
||
"""Context for a tool execution including call details, result, and display info."""
|
||
tool_call: Dict[str, Any]
|
||
tool_index: int
|
||
result: Optional[ToolResult] = None
|
||
function_name: Optional[str] = None
|
||
xml_tag_name: Optional[str] = None
|
||
error: Optional[Exception] = None
|
||
assistant_message_id: Optional[str] = None
|
||
parsing_details: Optional[Dict[str, Any]] = None
|
||
|
||
@dataclass
|
||
class ProcessorConfig:
|
||
"""
|
||
Configuration for response processing and tool execution.
|
||
|
||
This class controls how the LLM's responses are processed, including how tool calls
|
||
are detected, executed, and their results handled.
|
||
|
||
Attributes:
|
||
xml_tool_calling: Enable XML-based tool call detection (<tool>...</tool>)
|
||
native_tool_calling: Enable OpenAI-style function calling format
|
||
execute_tools: Whether to automatically execute detected tool calls
|
||
execute_on_stream: For streaming, execute tools as they appear vs. at the end
|
||
tool_execution_strategy: How to execute multiple tools ("sequential" or "parallel")
|
||
xml_adding_strategy: How to add XML tool results to the conversation
|
||
max_xml_tool_calls: Maximum number of XML tool calls to process (0 = no limit)
|
||
"""
|
||
|
||
xml_tool_calling: bool = True
|
||
native_tool_calling: bool = False
|
||
|
||
execute_tools: bool = True
|
||
execute_on_stream: bool = False
|
||
tool_execution_strategy: ToolExecutionStrategy = "sequential"
|
||
xml_adding_strategy: XmlAddingStrategy = "assistant_message"
|
||
max_xml_tool_calls: int = 0 # 0 means no limit
|
||
|
||
def __post_init__(self):
|
||
"""Validate configuration after initialization."""
|
||
if self.xml_tool_calling is False and self.native_tool_calling is False and self.execute_tools:
|
||
raise ValueError("At least one tool calling format (XML or native) must be enabled if execute_tools is True")
|
||
|
||
if self.xml_adding_strategy not in ["user_message", "assistant_message", "inline_edit"]:
|
||
raise ValueError("xml_adding_strategy must be 'user_message', 'assistant_message', or 'inline_edit'")
|
||
|
||
if self.max_xml_tool_calls < 0:
|
||
raise ValueError("max_xml_tool_calls must be a non-negative integer (0 = no limit)")
|
||
|
||
class ResponseProcessor:
|
||
"""Processes LLM responses, extracting and executing tool calls."""
|
||
|
||
def __init__(self, tool_registry: ToolRegistry, add_message_callback: Callable, trace: Optional[StatefulTraceClient] = None, is_agent_builder: bool = False, target_agent_id: Optional[str] = None, agent_config: Optional[dict] = None):
|
||
"""Initialize the ResponseProcessor.
|
||
|
||
Args:
|
||
tool_registry: Registry of available tools
|
||
add_message_callback: Callback function to add messages to the thread.
|
||
MUST return the full saved message object (dict) or None.
|
||
agent_config: Optional agent configuration with version information
|
||
"""
|
||
self.tool_registry = tool_registry
|
||
self.add_message = add_message_callback
|
||
self.trace = trace or langfuse.trace(name="anonymous:response_processor")
|
||
# Initialize the XML parser
|
||
self.xml_parser = XMLToolParser()
|
||
self.is_agent_builder = is_agent_builder
|
||
self.target_agent_id = target_agent_id
|
||
self.agent_config = agent_config
|
||
|
||
async def _yield_message(self, message_obj: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
|
||
"""Helper to yield a message with proper formatting.
|
||
|
||
Ensures that content and metadata are JSON strings for client compatibility.
|
||
"""
|
||
if message_obj:
|
||
return format_for_yield(message_obj)
|
||
return None
|
||
|
||
async def _add_message_with_agent_info(
|
||
self,
|
||
thread_id: str,
|
||
type: str,
|
||
content: Union[Dict[str, Any], List[Any], str],
|
||
is_llm_message: bool = False,
|
||
metadata: Optional[Dict[str, Any]] = None
|
||
):
|
||
"""Helper to add a message with agent version information if available."""
|
||
agent_id = None
|
||
agent_version_id = None
|
||
|
||
if self.agent_config:
|
||
agent_id = self.agent_config.get('agent_id')
|
||
agent_version_id = self.agent_config.get('current_version_id')
|
||
|
||
return await self.add_message(
|
||
thread_id=thread_id,
|
||
type=type,
|
||
content=content,
|
||
is_llm_message=is_llm_message,
|
||
metadata=metadata,
|
||
agent_id=agent_id,
|
||
agent_version_id=agent_version_id
|
||
)
|
||
|
||
async def process_streaming_response(
|
||
self,
|
||
llm_response: AsyncGenerator,
|
||
thread_id: str,
|
||
prompt_messages: List[Dict[str, Any]],
|
||
llm_model: str,
|
||
config: ProcessorConfig = ProcessorConfig(),
|
||
can_auto_continue: bool = False,
|
||
auto_continue_count: int = 0,
|
||
continuous_state: Optional[Dict[str, Any]] = None,
|
||
) -> AsyncGenerator[Dict[str, Any], None]:
|
||
"""Process a streaming LLM response, handling tool calls and execution.
|
||
|
||
Args:
|
||
llm_response: Streaming response from the LLM
|
||
thread_id: ID of the conversation thread
|
||
prompt_messages: List of messages sent to the LLM (the prompt)
|
||
llm_model: The name of the LLM model used
|
||
config: Configuration for parsing and execution
|
||
can_auto_continue: Whether auto-continue is enabled
|
||
auto_continue_count: Number of auto-continue cycles
|
||
continuous_state: Previous state of the conversation
|
||
|
||
Yields:
|
||
Complete message objects matching the DB schema, except for content chunks.
|
||
"""
|
||
# Initialize from continuous state if provided (for auto-continue)
|
||
continuous_state = continuous_state or {}
|
||
accumulated_content = continuous_state.get('accumulated_content', "")
|
||
tool_calls_buffer = {}
|
||
current_xml_content = accumulated_content # equal to accumulated_content if auto-continuing, else blank
|
||
xml_chunks_buffer = []
|
||
pending_tool_executions = []
|
||
yielded_tool_indices = set() # Stores indices of tools whose *status* has been yielded
|
||
tool_index = 0
|
||
xml_tool_call_count = 0
|
||
finish_reason = None
|
||
should_auto_continue = False
|
||
last_assistant_message_object = None # Store the final saved assistant message object
|
||
tool_result_message_objects = {} # tool_index -> full saved message object
|
||
has_printed_thinking_prefix = False # Flag for printing thinking prefix only once
|
||
agent_should_terminate = False # Flag to track if a terminating tool has been executed
|
||
complete_native_tool_calls = [] # Initialize early for use in assistant_response_end
|
||
|
||
# Collect metadata for reconstructing LiteLLM response object
|
||
streaming_metadata = {
|
||
"model": llm_model,
|
||
"created": None,
|
||
"usage": {
|
||
"prompt_tokens": 0,
|
||
"completion_tokens": 0,
|
||
"total_tokens": 0
|
||
},
|
||
"response_ms": None,
|
||
"first_chunk_time": None,
|
||
"last_chunk_time": None
|
||
}
|
||
|
||
logger.info(f"Streaming Config: XML={config.xml_tool_calling}, Native={config.native_tool_calling}, "
|
||
f"Execute on stream={config.execute_on_stream}, Strategy={config.tool_execution_strategy}")
|
||
|
||
# Reuse thread_run_id for auto-continue or create new one
|
||
thread_run_id = continuous_state.get('thread_run_id') or str(uuid.uuid4())
|
||
continuous_state['thread_run_id'] = thread_run_id
|
||
|
||
try:
|
||
# --- Save and Yield Start Events (only if not auto-continuing) ---
|
||
if auto_continue_count == 0:
|
||
start_content = {"status_type": "thread_run_start", "thread_run_id": thread_run_id}
|
||
start_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=start_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if start_msg_obj: yield format_for_yield(start_msg_obj)
|
||
|
||
assist_start_content = {"status_type": "assistant_response_start"}
|
||
assist_start_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=assist_start_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if assist_start_msg_obj: yield format_for_yield(assist_start_msg_obj)
|
||
# --- End Start Events ---
|
||
|
||
__sequence = continuous_state.get('sequence', 0) # get the sequence from the previous auto-continue cycle
|
||
|
||
async for chunk in llm_response:
|
||
# Extract streaming metadata from chunks
|
||
current_time = datetime.now(timezone.utc).timestamp()
|
||
if streaming_metadata["first_chunk_time"] is None:
|
||
streaming_metadata["first_chunk_time"] = current_time
|
||
streaming_metadata["last_chunk_time"] = current_time
|
||
|
||
# Extract metadata from chunk attributes
|
||
if hasattr(chunk, 'created') and chunk.created:
|
||
streaming_metadata["created"] = chunk.created
|
||
if hasattr(chunk, 'model') and chunk.model:
|
||
streaming_metadata["model"] = chunk.model
|
||
if hasattr(chunk, 'usage') and chunk.usage:
|
||
# Update usage information if available (including zero values)
|
||
if hasattr(chunk.usage, 'prompt_tokens') and chunk.usage.prompt_tokens is not None:
|
||
streaming_metadata["usage"]["prompt_tokens"] = chunk.usage.prompt_tokens
|
||
if hasattr(chunk.usage, 'completion_tokens') and chunk.usage.completion_tokens is not None:
|
||
streaming_metadata["usage"]["completion_tokens"] = chunk.usage.completion_tokens
|
||
if hasattr(chunk.usage, 'total_tokens') and chunk.usage.total_tokens is not None:
|
||
streaming_metadata["usage"]["total_tokens"] = chunk.usage.total_tokens
|
||
|
||
if hasattr(chunk, 'choices') and chunk.choices and hasattr(chunk.choices[0], 'finish_reason') and chunk.choices[0].finish_reason:
|
||
finish_reason = chunk.choices[0].finish_reason
|
||
logger.debug(f"Detected finish_reason: {finish_reason}")
|
||
|
||
if hasattr(chunk, 'choices') and chunk.choices:
|
||
delta = chunk.choices[0].delta if hasattr(chunk.choices[0], 'delta') else None
|
||
|
||
# Check for and log Anthropic thinking content
|
||
if delta and hasattr(delta, 'reasoning_content') and delta.reasoning_content:
|
||
if not has_printed_thinking_prefix:
|
||
# print("[THINKING]: ", end='', flush=True)
|
||
has_printed_thinking_prefix = True
|
||
# print(delta.reasoning_content, end='', flush=True)
|
||
# Append reasoning to main content to be saved in the final message
|
||
accumulated_content += delta.reasoning_content
|
||
|
||
# Process content chunk
|
||
if delta and hasattr(delta, 'content') and delta.content:
|
||
chunk_content = delta.content
|
||
# print(chunk_content, end='', flush=True)
|
||
accumulated_content += chunk_content
|
||
current_xml_content += chunk_content
|
||
|
||
if not (config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls):
|
||
# Yield ONLY content chunk (don't save)
|
||
now_chunk = datetime.now(timezone.utc).isoformat()
|
||
yield {
|
||
"sequence": __sequence,
|
||
"message_id": None, "thread_id": thread_id, "type": "assistant",
|
||
"is_llm_message": True,
|
||
"content": to_json_string({"role": "assistant", "content": chunk_content}),
|
||
"metadata": to_json_string({"stream_status": "chunk", "thread_run_id": thread_run_id}),
|
||
"created_at": now_chunk, "updated_at": now_chunk
|
||
}
|
||
__sequence += 1
|
||
else:
|
||
logger.info("XML tool call limit reached - not yielding more content chunks")
|
||
self.trace.event(name="xml_tool_call_limit_reached", level="DEFAULT", status_message=(f"XML tool call limit reached - not yielding more content chunks"))
|
||
|
||
# --- Process XML Tool Calls (if enabled and limit not reached) ---
|
||
if config.xml_tool_calling and not (config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls):
|
||
xml_chunks = self._extract_xml_chunks(current_xml_content)
|
||
for xml_chunk in xml_chunks:
|
||
current_xml_content = current_xml_content.replace(xml_chunk, "", 1)
|
||
xml_chunks_buffer.append(xml_chunk)
|
||
result = self._parse_xml_tool_call(xml_chunk)
|
||
if result:
|
||
tool_call, parsing_details = result
|
||
xml_tool_call_count += 1
|
||
current_assistant_id = last_assistant_message_object['message_id'] if last_assistant_message_object else None
|
||
context = self._create_tool_context(
|
||
tool_call, tool_index, current_assistant_id, parsing_details
|
||
)
|
||
|
||
if config.execute_tools and config.execute_on_stream:
|
||
# Save and Yield tool_started status
|
||
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id)
|
||
if started_msg_obj: yield format_for_yield(started_msg_obj)
|
||
yielded_tool_indices.add(tool_index) # Mark status as yielded
|
||
|
||
execution_task = asyncio.create_task(self._execute_tool(tool_call))
|
||
pending_tool_executions.append({
|
||
"task": execution_task, "tool_call": tool_call,
|
||
"tool_index": tool_index, "context": context
|
||
})
|
||
tool_index += 1
|
||
|
||
if config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls:
|
||
logger.debug(f"Reached XML tool call limit ({config.max_xml_tool_calls})")
|
||
finish_reason = "xml_tool_limit_reached"
|
||
break # Stop processing more XML chunks in this delta
|
||
|
||
# --- Process Native Tool Call Chunks ---
|
||
if config.native_tool_calling and delta and hasattr(delta, 'tool_calls') and delta.tool_calls:
|
||
for tool_call_chunk in delta.tool_calls:
|
||
# Yield Native Tool Call Chunk (transient status, not saved)
|
||
# ... (safe extraction logic for tool_call_data_chunk) ...
|
||
tool_call_data_chunk = {} # Placeholder for extracted data
|
||
if hasattr(tool_call_chunk, 'model_dump'): tool_call_data_chunk = tool_call_chunk.model_dump()
|
||
else: # Manual extraction...
|
||
if hasattr(tool_call_chunk, 'id'): tool_call_data_chunk['id'] = tool_call_chunk.id
|
||
if hasattr(tool_call_chunk, 'index'): tool_call_data_chunk['index'] = tool_call_chunk.index
|
||
if hasattr(tool_call_chunk, 'type'): tool_call_data_chunk['type'] = tool_call_chunk.type
|
||
if hasattr(tool_call_chunk, 'function'):
|
||
tool_call_data_chunk['function'] = {}
|
||
if hasattr(tool_call_chunk.function, 'name'): tool_call_data_chunk['function']['name'] = tool_call_chunk.function.name
|
||
if hasattr(tool_call_chunk.function, 'arguments'): tool_call_data_chunk['function']['arguments'] = tool_call_chunk.function.arguments if isinstance(tool_call_chunk.function.arguments, str) else to_json_string(tool_call_chunk.function.arguments)
|
||
|
||
|
||
now_tool_chunk = datetime.now(timezone.utc).isoformat()
|
||
yield {
|
||
"message_id": None, "thread_id": thread_id, "type": "status", "is_llm_message": True,
|
||
"content": to_json_string({"role": "assistant", "status_type": "tool_call_chunk", "tool_call_chunk": tool_call_data_chunk}),
|
||
"metadata": to_json_string({"thread_run_id": thread_run_id}),
|
||
"created_at": now_tool_chunk, "updated_at": now_tool_chunk
|
||
}
|
||
|
||
# --- Buffer and Execute Complete Native Tool Calls ---
|
||
if not hasattr(tool_call_chunk, 'function'): continue
|
||
idx = tool_call_chunk.index if hasattr(tool_call_chunk, 'index') else 0
|
||
# ... (buffer update logic remains same) ...
|
||
# ... (check complete logic remains same) ...
|
||
has_complete_tool_call = False # Placeholder
|
||
if (tool_calls_buffer.get(idx) and
|
||
tool_calls_buffer[idx]['id'] and
|
||
tool_calls_buffer[idx]['function']['name'] and
|
||
tool_calls_buffer[idx]['function']['arguments']):
|
||
try:
|
||
safe_json_parse(tool_calls_buffer[idx]['function']['arguments'])
|
||
has_complete_tool_call = True
|
||
except json.JSONDecodeError: pass
|
||
|
||
|
||
if has_complete_tool_call and config.execute_tools and config.execute_on_stream:
|
||
current_tool = tool_calls_buffer[idx]
|
||
tool_call_data = {
|
||
"function_name": current_tool['function']['name'],
|
||
"arguments": safe_json_parse(current_tool['function']['arguments']),
|
||
"id": current_tool['id']
|
||
}
|
||
current_assistant_id = last_assistant_message_object['message_id'] if last_assistant_message_object else None
|
||
context = self._create_tool_context(
|
||
tool_call_data, tool_index, current_assistant_id
|
||
)
|
||
|
||
# Save and Yield tool_started status
|
||
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id)
|
||
if started_msg_obj: yield format_for_yield(started_msg_obj)
|
||
yielded_tool_indices.add(tool_index) # Mark status as yielded
|
||
|
||
execution_task = asyncio.create_task(self._execute_tool(tool_call_data))
|
||
pending_tool_executions.append({
|
||
"task": execution_task, "tool_call": tool_call_data,
|
||
"tool_index": tool_index, "context": context
|
||
})
|
||
tool_index += 1
|
||
|
||
if finish_reason == "xml_tool_limit_reached":
|
||
logger.info("Stopping stream processing after loop due to XML tool call limit")
|
||
self.trace.event(name="stopping_stream_processing_after_loop_due_to_xml_tool_call_limit", level="DEFAULT", status_message=(f"Stopping stream processing after loop due to XML tool call limit"))
|
||
break
|
||
|
||
# print() # Add a final newline after the streaming loop finishes
|
||
|
||
# --- After Streaming Loop ---
|
||
|
||
if (
|
||
streaming_metadata["usage"]["total_tokens"] == 0
|
||
):
|
||
logger.info("🔥 No usage data from provider, counting with litellm.token_counter")
|
||
|
||
try:
|
||
# prompt side
|
||
prompt_tokens = token_counter(
|
||
model=llm_model,
|
||
messages=prompt_messages # chat or plain; token_counter handles both
|
||
)
|
||
|
||
# completion side
|
||
completion_tokens = token_counter(
|
||
model=llm_model,
|
||
text=accumulated_content or "" # empty string safe
|
||
)
|
||
|
||
streaming_metadata["usage"]["prompt_tokens"] = prompt_tokens
|
||
streaming_metadata["usage"]["completion_tokens"] = completion_tokens
|
||
streaming_metadata["usage"]["total_tokens"] = prompt_tokens + completion_tokens
|
||
|
||
logger.info(
|
||
f"🔥 Estimated tokens – prompt: {prompt_tokens}, "
|
||
f"completion: {completion_tokens}, total: {prompt_tokens + completion_tokens}"
|
||
)
|
||
self.trace.event(name="usage_calculated_with_litellm_token_counter", level="DEFAULT", status_message=(f"Usage calculated with litellm.token_counter"))
|
||
except Exception as e:
|
||
logger.warning(f"Failed to calculate usage: {str(e)}")
|
||
self.trace.event(name="failed_to_calculate_usage", level="WARNING", status_message=(f"Failed to calculate usage: {str(e)}"))
|
||
|
||
|
||
# Wait for pending tool executions from streaming phase
|
||
tool_results_buffer = [] # Stores (tool_call, result, tool_index, context)
|
||
if pending_tool_executions:
|
||
logger.info(f"Waiting for {len(pending_tool_executions)} pending streamed tool executions")
|
||
self.trace.event(name="waiting_for_pending_streamed_tool_executions", level="DEFAULT", status_message=(f"Waiting for {len(pending_tool_executions)} pending streamed tool executions"))
|
||
# ... (asyncio.wait logic) ...
|
||
pending_tasks = [execution["task"] for execution in pending_tool_executions]
|
||
done, _ = await asyncio.wait(pending_tasks)
|
||
|
||
for execution in pending_tool_executions:
|
||
tool_idx = execution.get("tool_index", -1)
|
||
context = execution["context"]
|
||
tool_name = context.function_name
|
||
|
||
# Check if status was already yielded during stream run
|
||
if tool_idx in yielded_tool_indices:
|
||
logger.debug(f"Status for tool index {tool_idx} already yielded.")
|
||
# Still need to process the result for the buffer
|
||
try:
|
||
if execution["task"].done():
|
||
result = execution["task"].result()
|
||
context.result = result
|
||
tool_results_buffer.append((execution["tool_call"], result, tool_idx, context))
|
||
|
||
if tool_name in ['ask', 'complete']:
|
||
logger.info(f"Terminating tool '{tool_name}' completed during streaming. Setting termination flag.")
|
||
self.trace.event(name="terminating_tool_completed_during_streaming", level="DEFAULT", status_message=(f"Terminating tool '{tool_name}' completed during streaming. Setting termination flag."))
|
||
agent_should_terminate = True
|
||
|
||
else: # Should not happen with asyncio.wait
|
||
logger.warning(f"Task for tool index {tool_idx} not done after wait.")
|
||
self.trace.event(name="task_for_tool_index_not_done_after_wait", level="WARNING", status_message=(f"Task for tool index {tool_idx} not done after wait."))
|
||
except Exception as e:
|
||
logger.error(f"Error getting result for pending tool execution {tool_idx}: {str(e)}")
|
||
self.trace.event(name="error_getting_result_for_pending_tool_execution", level="ERROR", status_message=(f"Error getting result for pending tool execution {tool_idx}: {str(e)}"))
|
||
context.error = e
|
||
# Save and Yield tool error status message (even if started was yielded)
|
||
error_msg_obj = await self._yield_and_save_tool_error(context, thread_id, thread_run_id)
|
||
if error_msg_obj: yield format_for_yield(error_msg_obj)
|
||
continue # Skip further status yielding for this tool index
|
||
|
||
# If status wasn't yielded before (shouldn't happen with current logic), yield it now
|
||
try:
|
||
if execution["task"].done():
|
||
result = execution["task"].result()
|
||
context.result = result
|
||
tool_results_buffer.append((execution["tool_call"], result, tool_idx, context))
|
||
|
||
# Check if this is a terminating tool
|
||
if tool_name in ['ask', 'complete']:
|
||
logger.info(f"Terminating tool '{tool_name}' completed during streaming. Setting termination flag.")
|
||
self.trace.event(name="terminating_tool_completed_during_streaming", level="DEFAULT", status_message=(f"Terminating tool '{tool_name}' completed during streaming. Setting termination flag."))
|
||
agent_should_terminate = True
|
||
|
||
# Save and Yield tool completed/failed status
|
||
completed_msg_obj = await self._yield_and_save_tool_completed(
|
||
context, None, thread_id, thread_run_id
|
||
)
|
||
if completed_msg_obj: yield format_for_yield(completed_msg_obj)
|
||
yielded_tool_indices.add(tool_idx)
|
||
except Exception as e:
|
||
logger.error(f"Error getting result/yielding status for pending tool execution {tool_idx}: {str(e)}")
|
||
self.trace.event(name="error_getting_result_yielding_status_for_pending_tool_execution", level="ERROR", status_message=(f"Error getting result/yielding status for pending tool execution {tool_idx}: {str(e)}"))
|
||
context.error = e
|
||
# Save and Yield tool error status
|
||
error_msg_obj = await self._yield_and_save_tool_error(context, thread_id, thread_run_id)
|
||
if error_msg_obj: yield format_for_yield(error_msg_obj)
|
||
yielded_tool_indices.add(tool_idx)
|
||
|
||
|
||
# Save and yield finish status if limit was reached
|
||
if finish_reason == "xml_tool_limit_reached":
|
||
finish_content = {"status_type": "finish", "finish_reason": "xml_tool_limit_reached"}
|
||
finish_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=finish_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if finish_msg_obj: yield format_for_yield(finish_msg_obj)
|
||
logger.info(f"Stream finished with reason: xml_tool_limit_reached after {xml_tool_call_count} XML tool calls")
|
||
self.trace.event(name="stream_finished_with_reason_xml_tool_limit_reached_after_xml_tool_calls", level="DEFAULT", status_message=(f"Stream finished with reason: xml_tool_limit_reached after {xml_tool_call_count} XML tool calls"))
|
||
|
||
# Calculate if auto-continue is needed if the finish reason is length
|
||
should_auto_continue = (can_auto_continue and finish_reason == 'length')
|
||
|
||
# --- SAVE and YIELD Final Assistant Message ---
|
||
# Only save assistant message if NOT auto-continuing due to length to avoid duplicate messages
|
||
if accumulated_content and not should_auto_continue:
|
||
# ... (Truncate accumulated_content logic) ...
|
||
if config.max_xml_tool_calls > 0 and xml_tool_call_count >= config.max_xml_tool_calls and xml_chunks_buffer:
|
||
last_xml_chunk = xml_chunks_buffer[-1]
|
||
last_chunk_end_pos = accumulated_content.find(last_xml_chunk) + len(last_xml_chunk)
|
||
if last_chunk_end_pos > 0:
|
||
accumulated_content = accumulated_content[:last_chunk_end_pos]
|
||
|
||
# ... (Extract complete_native_tool_calls logic) ...
|
||
# Update complete_native_tool_calls from buffer (initialized earlier)
|
||
if config.native_tool_calling:
|
||
for idx, tc_buf in tool_calls_buffer.items():
|
||
if tc_buf['id'] and tc_buf['function']['name'] and tc_buf['function']['arguments']:
|
||
try:
|
||
args = safe_json_parse(tc_buf['function']['arguments'])
|
||
complete_native_tool_calls.append({
|
||
"id": tc_buf['id'], "type": "function",
|
||
"function": {"name": tc_buf['function']['name'],"arguments": args}
|
||
})
|
||
except json.JSONDecodeError: continue
|
||
|
||
message_data = { # Dict to be saved in 'content'
|
||
"role": "assistant", "content": accumulated_content,
|
||
"tool_calls": complete_native_tool_calls or None
|
||
}
|
||
|
||
last_assistant_message_object = await self._add_message_with_agent_info(
|
||
thread_id=thread_id, type="assistant", content=message_data,
|
||
is_llm_message=True, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
|
||
if last_assistant_message_object:
|
||
# Yield the complete saved object, adding stream_status metadata just for yield
|
||
yield_metadata = ensure_dict(last_assistant_message_object.get('metadata'), {})
|
||
yield_metadata['stream_status'] = 'complete'
|
||
# Format the message for yielding
|
||
yield_message = last_assistant_message_object.copy()
|
||
yield_message['metadata'] = yield_metadata
|
||
yield format_for_yield(yield_message)
|
||
else:
|
||
logger.error(f"Failed to save final assistant message for thread {thread_id}")
|
||
self.trace.event(name="failed_to_save_final_assistant_message_for_thread", level="ERROR", status_message=(f"Failed to save final assistant message for thread {thread_id}"))
|
||
# Save and yield an error status
|
||
err_content = {"role": "system", "status_type": "error", "message": "Failed to save final assistant message"}
|
||
err_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=err_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if err_msg_obj: yield format_for_yield(err_msg_obj)
|
||
|
||
# --- Process All Tool Results Now ---
|
||
if config.execute_tools:
|
||
final_tool_calls_to_process = []
|
||
# ... (Gather final_tool_calls_to_process from native and XML buffers) ...
|
||
# Gather native tool calls from buffer
|
||
if config.native_tool_calling and complete_native_tool_calls:
|
||
for tc in complete_native_tool_calls:
|
||
final_tool_calls_to_process.append({
|
||
"function_name": tc["function"]["name"],
|
||
"arguments": tc["function"]["arguments"], # Already parsed object
|
||
"id": tc["id"]
|
||
})
|
||
# Gather XML tool calls from buffer (up to limit)
|
||
parsed_xml_data = []
|
||
if config.xml_tool_calling:
|
||
# Reparse remaining content just in case (should be empty if processed correctly)
|
||
xml_chunks = self._extract_xml_chunks(current_xml_content)
|
||
xml_chunks_buffer.extend(xml_chunks)
|
||
# Process only chunks not already handled in the stream loop
|
||
remaining_limit = config.max_xml_tool_calls - xml_tool_call_count if config.max_xml_tool_calls > 0 else len(xml_chunks_buffer)
|
||
xml_chunks_to_process = xml_chunks_buffer[:remaining_limit] # Ensure limit is respected
|
||
|
||
for chunk in xml_chunks_to_process:
|
||
parsed_result = self._parse_xml_tool_call(chunk)
|
||
if parsed_result:
|
||
tool_call, parsing_details = parsed_result
|
||
# Avoid adding if already processed during streaming
|
||
if not any(exec['tool_call'] == tool_call for exec in pending_tool_executions):
|
||
final_tool_calls_to_process.append(tool_call)
|
||
parsed_xml_data.append({'tool_call': tool_call, 'parsing_details': parsing_details})
|
||
|
||
|
||
all_tool_data_map = {} # tool_index -> {'tool_call': ..., 'parsing_details': ...}
|
||
# Add native tool data
|
||
native_tool_index = 0
|
||
if config.native_tool_calling and complete_native_tool_calls:
|
||
for tc in complete_native_tool_calls:
|
||
# Find the corresponding entry in final_tool_calls_to_process if needed
|
||
# For now, assume order matches if only native used
|
||
exec_tool_call = {
|
||
"function_name": tc["function"]["name"],
|
||
"arguments": tc["function"]["arguments"],
|
||
"id": tc["id"]
|
||
}
|
||
all_tool_data_map[native_tool_index] = {"tool_call": exec_tool_call, "parsing_details": None}
|
||
native_tool_index += 1
|
||
|
||
# Add XML tool data
|
||
xml_tool_index_start = native_tool_index
|
||
for idx, item in enumerate(parsed_xml_data):
|
||
all_tool_data_map[xml_tool_index_start + idx] = item
|
||
|
||
|
||
tool_results_map = {} # tool_index -> (tool_call, result, context)
|
||
|
||
# Populate from buffer if executed on stream
|
||
if config.execute_on_stream and tool_results_buffer:
|
||
logger.info(f"Processing {len(tool_results_buffer)} buffered tool results")
|
||
self.trace.event(name="processing_buffered_tool_results", level="DEFAULT", status_message=(f"Processing {len(tool_results_buffer)} buffered tool results"))
|
||
for tool_call, result, tool_idx, context in tool_results_buffer:
|
||
if last_assistant_message_object: context.assistant_message_id = last_assistant_message_object['message_id']
|
||
tool_results_map[tool_idx] = (tool_call, result, context)
|
||
|
||
# Or execute now if not streamed
|
||
elif final_tool_calls_to_process and not config.execute_on_stream:
|
||
logger.info(f"Executing {len(final_tool_calls_to_process)} tools ({config.tool_execution_strategy}) after stream")
|
||
self.trace.event(name="executing_tools_after_stream", level="DEFAULT", status_message=(f"Executing {len(final_tool_calls_to_process)} tools ({config.tool_execution_strategy}) after stream"))
|
||
results_list = await self._execute_tools(final_tool_calls_to_process, config.tool_execution_strategy)
|
||
current_tool_idx = 0
|
||
for tc, res in results_list:
|
||
# Map back using all_tool_data_map which has correct indices
|
||
if current_tool_idx in all_tool_data_map:
|
||
tool_data = all_tool_data_map[current_tool_idx]
|
||
context = self._create_tool_context(
|
||
tc, current_tool_idx,
|
||
last_assistant_message_object['message_id'] if last_assistant_message_object else None,
|
||
tool_data.get('parsing_details')
|
||
)
|
||
context.result = res
|
||
tool_results_map[current_tool_idx] = (tc, res, context)
|
||
else:
|
||
logger.warning(f"Could not map result for tool index {current_tool_idx}")
|
||
self.trace.event(name="could_not_map_result_for_tool_index", level="WARNING", status_message=(f"Could not map result for tool index {current_tool_idx}"))
|
||
current_tool_idx += 1
|
||
|
||
# Save and Yield each result message
|
||
if tool_results_map:
|
||
logger.info(f"Saving and yielding {len(tool_results_map)} final tool result messages")
|
||
self.trace.event(name="saving_and_yielding_final_tool_result_messages", level="DEFAULT", status_message=(f"Saving and yielding {len(tool_results_map)} final tool result messages"))
|
||
for tool_idx in sorted(tool_results_map.keys()):
|
||
tool_call, result, context = tool_results_map[tool_idx]
|
||
context.result = result
|
||
if not context.assistant_message_id and last_assistant_message_object:
|
||
context.assistant_message_id = last_assistant_message_object['message_id']
|
||
|
||
# Yield start status ONLY IF executing non-streamed (already yielded if streamed)
|
||
if not config.execute_on_stream and tool_idx not in yielded_tool_indices:
|
||
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id)
|
||
if started_msg_obj: yield format_for_yield(started_msg_obj)
|
||
yielded_tool_indices.add(tool_idx) # Mark status yielded
|
||
|
||
# Save the tool result message to DB
|
||
saved_tool_result_object = await self._add_tool_result( # Returns full object or None
|
||
thread_id, tool_call, result, config.xml_adding_strategy,
|
||
context.assistant_message_id, context.parsing_details
|
||
)
|
||
|
||
# Yield completed/failed status (linked to saved result ID if available)
|
||
completed_msg_obj = await self._yield_and_save_tool_completed(
|
||
context,
|
||
saved_tool_result_object['message_id'] if saved_tool_result_object else None,
|
||
thread_id, thread_run_id
|
||
)
|
||
if completed_msg_obj: yield format_for_yield(completed_msg_obj)
|
||
# Don't add to yielded_tool_indices here, completion status is separate yield
|
||
|
||
# Yield the saved tool result object
|
||
if saved_tool_result_object:
|
||
tool_result_message_objects[tool_idx] = saved_tool_result_object
|
||
yield format_for_yield(saved_tool_result_object)
|
||
else:
|
||
logger.error(f"Failed to save tool result for index {tool_idx}, not yielding result message.")
|
||
self.trace.event(name="failed_to_save_tool_result_for_index", level="ERROR", status_message=(f"Failed to save tool result for index {tool_idx}, not yielding result message."))
|
||
# Optionally yield error status for saving failure?
|
||
|
||
# --- Final Finish Status ---
|
||
if finish_reason and finish_reason != "xml_tool_limit_reached":
|
||
finish_content = {"status_type": "finish", "finish_reason": finish_reason}
|
||
finish_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=finish_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if finish_msg_obj: yield format_for_yield(finish_msg_obj)
|
||
|
||
# Check if agent should terminate after processing pending tools
|
||
if agent_should_terminate:
|
||
logger.info("Agent termination requested after executing ask/complete tool. Stopping further processing.")
|
||
self.trace.event(name="agent_termination_requested", level="DEFAULT", status_message="Agent termination requested after executing ask/complete tool. Stopping further processing.")
|
||
|
||
# Set finish reason to indicate termination
|
||
finish_reason = "agent_terminated"
|
||
|
||
# Save and yield termination status
|
||
finish_content = {"status_type": "finish", "finish_reason": "agent_terminated"}
|
||
finish_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=finish_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if finish_msg_obj: yield format_for_yield(finish_msg_obj)
|
||
|
||
# Save assistant_response_end BEFORE terminating
|
||
if last_assistant_message_object:
|
||
try:
|
||
# Calculate response time if we have timing data
|
||
if streaming_metadata["first_chunk_time"] and streaming_metadata["last_chunk_time"]:
|
||
streaming_metadata["response_ms"] = (streaming_metadata["last_chunk_time"] - streaming_metadata["first_chunk_time"]) * 1000
|
||
|
||
# Create a LiteLLM-like response object for streaming (before termination)
|
||
# Check if we have any actual usage data
|
||
has_usage_data = (
|
||
streaming_metadata["usage"]["prompt_tokens"] > 0 or
|
||
streaming_metadata["usage"]["completion_tokens"] > 0 or
|
||
streaming_metadata["usage"]["total_tokens"] > 0
|
||
)
|
||
|
||
assistant_end_content = {
|
||
"choices": [
|
||
{
|
||
"finish_reason": finish_reason or "stop",
|
||
"index": 0,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": accumulated_content,
|
||
"tool_calls": complete_native_tool_calls or None
|
||
}
|
||
}
|
||
],
|
||
"created": streaming_metadata.get("created"),
|
||
"model": streaming_metadata.get("model", llm_model),
|
||
"usage": streaming_metadata["usage"], # Always include usage like LiteLLM does
|
||
"streaming": True, # Add flag to indicate this was reconstructed from streaming
|
||
}
|
||
|
||
# Only include response_ms if we have timing data
|
||
if streaming_metadata.get("response_ms"):
|
||
assistant_end_content["response_ms"] = streaming_metadata["response_ms"]
|
||
|
||
await self.add_message(
|
||
thread_id=thread_id,
|
||
type="assistant_response_end",
|
||
content=assistant_end_content,
|
||
is_llm_message=False,
|
||
metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
logger.info("Assistant response end saved for stream (before termination)")
|
||
except Exception as e:
|
||
logger.error(f"Error saving assistant response end for stream (before termination): {str(e)}")
|
||
self.trace.event(name="error_saving_assistant_response_end_for_stream_before_termination", level="ERROR", status_message=(f"Error saving assistant response end for stream (before termination): {str(e)}"))
|
||
|
||
# Skip all remaining processing and go to finally block
|
||
return
|
||
|
||
# --- Save and Yield assistant_response_end ---
|
||
# Only save assistant_response_end if not auto-continuing (response is actually complete)
|
||
if not should_auto_continue:
|
||
if last_assistant_message_object: # Only save if assistant message was saved
|
||
try:
|
||
# Calculate response time if we have timing data
|
||
if streaming_metadata["first_chunk_time"] and streaming_metadata["last_chunk_time"]:
|
||
streaming_metadata["response_ms"] = (streaming_metadata["last_chunk_time"] - streaming_metadata["first_chunk_time"]) * 1000
|
||
|
||
# Create a LiteLLM-like response object for streaming
|
||
# Check if we have any actual usage data
|
||
has_usage_data = (
|
||
streaming_metadata["usage"]["prompt_tokens"] > 0 or
|
||
streaming_metadata["usage"]["completion_tokens"] > 0 or
|
||
streaming_metadata["usage"]["total_tokens"] > 0
|
||
)
|
||
|
||
assistant_end_content = {
|
||
"choices": [
|
||
{
|
||
"finish_reason": finish_reason or "stop",
|
||
"index": 0,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": accumulated_content,
|
||
"tool_calls": complete_native_tool_calls or None
|
||
}
|
||
}
|
||
],
|
||
"created": streaming_metadata.get("created"),
|
||
"model": streaming_metadata.get("model", llm_model),
|
||
"usage": streaming_metadata["usage"], # Always include usage like LiteLLM does
|
||
"streaming": True, # Add flag to indicate this was reconstructed from streaming
|
||
}
|
||
|
||
# Only include response_ms if we have timing data
|
||
if streaming_metadata.get("response_ms"):
|
||
assistant_end_content["response_ms"] = streaming_metadata["response_ms"]
|
||
|
||
await self.add_message(
|
||
thread_id=thread_id,
|
||
type="assistant_response_end",
|
||
content=assistant_end_content,
|
||
is_llm_message=False,
|
||
metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
logger.info("Assistant response end saved for stream")
|
||
except Exception as e:
|
||
logger.error(f"Error saving assistant response end for stream: {str(e)}")
|
||
self.trace.event(name="error_saving_assistant_response_end_for_stream", level="ERROR", status_message=(f"Error saving assistant response end for stream: {str(e)}"))
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error processing stream: {str(e)}", exc_info=True)
|
||
self.trace.event(name="error_processing_stream", level="ERROR", status_message=(f"Error processing stream: {str(e)}"))
|
||
# Save and yield error status message
|
||
|
||
err_content = {"role": "system", "status_type": "error", "message": str(e)}
|
||
if (not "AnthropicException - Overloaded" in str(e)):
|
||
err_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=err_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None}
|
||
)
|
||
if err_msg_obj: yield format_for_yield(err_msg_obj) # Yield the saved error message
|
||
# Re-raise the same exception (not a new one) to ensure proper error propagation
|
||
logger.critical(f"Re-raising error to stop further processing: {str(e)}")
|
||
self.trace.event(name="re_raising_error_to_stop_further_processing", level="ERROR", status_message=(f"Re-raising error to stop further processing: {str(e)}"))
|
||
else:
|
||
logger.error(f"AnthropicException - Overloaded detected - Falling back to OpenRouter: {str(e)}", exc_info=True)
|
||
self.trace.event(name="anthropic_exception_overloaded_detected", level="ERROR", status_message=(f"AnthropicException - Overloaded detected - Falling back to OpenRouter: {str(e)}"))
|
||
raise # Use bare 'raise' to preserve the original exception with its traceback
|
||
|
||
finally:
|
||
# Update continuous state for potential auto-continue
|
||
if should_auto_continue:
|
||
continuous_state['accumulated_content'] = accumulated_content
|
||
continuous_state['sequence'] = __sequence
|
||
|
||
logger.info(f"Updated continuous state for auto-continue with {len(accumulated_content)} chars")
|
||
else:
|
||
# Save and Yield the final thread_run_end status (only if not auto-continuing and finish_reason is not 'length')
|
||
try:
|
||
end_content = {"status_type": "thread_run_end"}
|
||
end_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=end_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None}
|
||
)
|
||
if end_msg_obj: yield format_for_yield(end_msg_obj)
|
||
except Exception as final_e:
|
||
logger.error(f"Error in finally block: {str(final_e)}", exc_info=True)
|
||
self.trace.event(name="error_in_finally_block", level="ERROR", status_message=(f"Error in finally block: {str(final_e)}"))
|
||
|
||
async def process_non_streaming_response(
|
||
self,
|
||
llm_response: Any,
|
||
thread_id: str,
|
||
prompt_messages: List[Dict[str, Any]],
|
||
llm_model: str,
|
||
config: ProcessorConfig = ProcessorConfig(),
|
||
) -> AsyncGenerator[Dict[str, Any], None]:
|
||
"""Process a non-streaming LLM response, handling tool calls and execution.
|
||
|
||
Args:
|
||
llm_response: Response from the LLM
|
||
thread_id: ID of the conversation thread
|
||
prompt_messages: List of messages sent to the LLM (the prompt)
|
||
llm_model: The name of the LLM model used
|
||
config: Configuration for parsing and execution
|
||
|
||
Yields:
|
||
Complete message objects matching the DB schema.
|
||
"""
|
||
content = ""
|
||
thread_run_id = str(uuid.uuid4())
|
||
all_tool_data = [] # Stores {'tool_call': ..., 'parsing_details': ...}
|
||
tool_index = 0
|
||
assistant_message_object = None
|
||
tool_result_message_objects = {}
|
||
finish_reason = None
|
||
native_tool_calls_for_message = []
|
||
|
||
try:
|
||
# Save and Yield thread_run_start status message
|
||
start_content = {"status_type": "thread_run_start", "thread_run_id": thread_run_id}
|
||
start_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=start_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if start_msg_obj: yield format_for_yield(start_msg_obj)
|
||
|
||
# Extract finish_reason, content, tool calls
|
||
if hasattr(llm_response, 'choices') and llm_response.choices:
|
||
if hasattr(llm_response.choices[0], 'finish_reason'):
|
||
finish_reason = llm_response.choices[0].finish_reason
|
||
logger.info(f"Non-streaming finish_reason: {finish_reason}")
|
||
self.trace.event(name="non_streaming_finish_reason", level="DEFAULT", status_message=(f"Non-streaming finish_reason: {finish_reason}"))
|
||
response_message = llm_response.choices[0].message if hasattr(llm_response.choices[0], 'message') else None
|
||
if response_message:
|
||
if hasattr(response_message, 'content') and response_message.content:
|
||
content = response_message.content
|
||
if config.xml_tool_calling:
|
||
parsed_xml_data = self._parse_xml_tool_calls(content)
|
||
if config.max_xml_tool_calls > 0 and len(parsed_xml_data) > config.max_xml_tool_calls:
|
||
# Truncate content and tool data if limit exceeded
|
||
# ... (Truncation logic similar to streaming) ...
|
||
if parsed_xml_data:
|
||
xml_chunks = self._extract_xml_chunks(content)[:config.max_xml_tool_calls]
|
||
if xml_chunks:
|
||
last_chunk = xml_chunks[-1]
|
||
last_chunk_pos = content.find(last_chunk)
|
||
if last_chunk_pos >= 0: content = content[:last_chunk_pos + len(last_chunk)]
|
||
parsed_xml_data = parsed_xml_data[:config.max_xml_tool_calls]
|
||
finish_reason = "xml_tool_limit_reached"
|
||
all_tool_data.extend(parsed_xml_data)
|
||
|
||
if config.native_tool_calling and hasattr(response_message, 'tool_calls') and response_message.tool_calls:
|
||
for tool_call in response_message.tool_calls:
|
||
if hasattr(tool_call, 'function'):
|
||
exec_tool_call = {
|
||
"function_name": tool_call.function.name,
|
||
"arguments": safe_json_parse(tool_call.function.arguments) if isinstance(tool_call.function.arguments, str) else tool_call.function.arguments,
|
||
"id": tool_call.id if hasattr(tool_call, 'id') else str(uuid.uuid4())
|
||
}
|
||
all_tool_data.append({"tool_call": exec_tool_call, "parsing_details": None})
|
||
native_tool_calls_for_message.append({
|
||
"id": exec_tool_call["id"], "type": "function",
|
||
"function": {
|
||
"name": tool_call.function.name,
|
||
"arguments": tool_call.function.arguments if isinstance(tool_call.function.arguments, str) else to_json_string(tool_call.function.arguments)
|
||
}
|
||
})
|
||
|
||
|
||
# --- SAVE and YIELD Final Assistant Message ---
|
||
message_data = {"role": "assistant", "content": content, "tool_calls": native_tool_calls_for_message or None}
|
||
assistant_message_object = await self._add_message_with_agent_info(
|
||
thread_id=thread_id, type="assistant", content=message_data,
|
||
is_llm_message=True, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if assistant_message_object:
|
||
yield assistant_message_object
|
||
else:
|
||
logger.error(f"Failed to save non-streaming assistant message for thread {thread_id}")
|
||
self.trace.event(name="failed_to_save_non_streaming_assistant_message_for_thread", level="ERROR", status_message=(f"Failed to save non-streaming assistant message for thread {thread_id}"))
|
||
err_content = {"role": "system", "status_type": "error", "message": "Failed to save assistant message"}
|
||
err_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=err_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if err_msg_obj: yield format_for_yield(err_msg_obj)
|
||
|
||
# --- Execute Tools and Yield Results ---
|
||
tool_calls_to_execute = [item['tool_call'] for item in all_tool_data]
|
||
if config.execute_tools and tool_calls_to_execute:
|
||
logger.info(f"Executing {len(tool_calls_to_execute)} tools with strategy: {config.tool_execution_strategy}")
|
||
self.trace.event(name="executing_tools_with_strategy", level="DEFAULT", status_message=(f"Executing {len(tool_calls_to_execute)} tools with strategy: {config.tool_execution_strategy}"))
|
||
tool_results = await self._execute_tools(tool_calls_to_execute, config.tool_execution_strategy)
|
||
|
||
for i, (returned_tool_call, result) in enumerate(tool_results):
|
||
original_data = all_tool_data[i]
|
||
tool_call_from_data = original_data['tool_call']
|
||
parsing_details = original_data['parsing_details']
|
||
current_assistant_id = assistant_message_object['message_id'] if assistant_message_object else None
|
||
|
||
context = self._create_tool_context(
|
||
tool_call_from_data, tool_index, current_assistant_id, parsing_details
|
||
)
|
||
context.result = result
|
||
|
||
# Save and Yield start status
|
||
started_msg_obj = await self._yield_and_save_tool_started(context, thread_id, thread_run_id)
|
||
if started_msg_obj: yield format_for_yield(started_msg_obj)
|
||
|
||
# Save tool result
|
||
saved_tool_result_object = await self._add_tool_result(
|
||
thread_id, tool_call_from_data, result, config.xml_adding_strategy,
|
||
current_assistant_id, parsing_details
|
||
)
|
||
|
||
# Save and Yield completed/failed status
|
||
completed_msg_obj = await self._yield_and_save_tool_completed(
|
||
context,
|
||
saved_tool_result_object['message_id'] if saved_tool_result_object else None,
|
||
thread_id, thread_run_id
|
||
)
|
||
if completed_msg_obj: yield format_for_yield(completed_msg_obj)
|
||
|
||
# Yield the saved tool result object
|
||
if saved_tool_result_object:
|
||
tool_result_message_objects[tool_index] = saved_tool_result_object
|
||
yield format_for_yield(saved_tool_result_object)
|
||
else:
|
||
logger.error(f"Failed to save tool result for index {tool_index}")
|
||
self.trace.event(name="failed_to_save_tool_result_for_index", level="ERROR", status_message=(f"Failed to save tool result for index {tool_index}"))
|
||
|
||
tool_index += 1
|
||
|
||
# --- Save and Yield Final Status ---
|
||
if finish_reason:
|
||
finish_content = {"status_type": "finish", "finish_reason": finish_reason}
|
||
finish_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=finish_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
if finish_msg_obj: yield format_for_yield(finish_msg_obj)
|
||
|
||
# --- Save and Yield assistant_response_end ---
|
||
if assistant_message_object: # Only save if assistant message was saved
|
||
try:
|
||
# Save the full LiteLLM response object directly in content
|
||
await self.add_message(
|
||
thread_id=thread_id,
|
||
type="assistant_response_end",
|
||
content=llm_response,
|
||
is_llm_message=False,
|
||
metadata={"thread_run_id": thread_run_id}
|
||
)
|
||
logger.info("Assistant response end saved for non-stream")
|
||
except Exception as e:
|
||
logger.error(f"Error saving assistant response end for non-stream: {str(e)}")
|
||
self.trace.event(name="error_saving_assistant_response_end_for_non_stream", level="ERROR", status_message=(f"Error saving assistant response end for non-stream: {str(e)}"))
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error processing non-streaming response: {str(e)}", exc_info=True)
|
||
self.trace.event(name="error_processing_non_streaming_response", level="ERROR", status_message=(f"Error processing non-streaming response: {str(e)}"))
|
||
# Save and yield error status
|
||
err_content = {"role": "system", "status_type": "error", "message": str(e)}
|
||
err_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=err_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None}
|
||
)
|
||
if err_msg_obj: yield format_for_yield(err_msg_obj)
|
||
|
||
# Re-raise the same exception (not a new one) to ensure proper error propagation
|
||
logger.critical(f"Re-raising error to stop further processing: {str(e)}")
|
||
self.trace.event(name="re_raising_error_to_stop_further_processing", level="CRITICAL", status_message=(f"Re-raising error to stop further processing: {str(e)}"))
|
||
raise # Use bare 'raise' to preserve the original exception with its traceback
|
||
|
||
finally:
|
||
# Save and Yield the final thread_run_end status
|
||
end_content = {"status_type": "thread_run_end"}
|
||
end_msg_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=end_content,
|
||
is_llm_message=False, metadata={"thread_run_id": thread_run_id if 'thread_run_id' in locals() else None}
|
||
)
|
||
if end_msg_obj: yield format_for_yield(end_msg_obj)
|
||
|
||
|
||
def _extract_xml_chunks(self, content: str) -> List[str]:
|
||
"""Extract complete XML chunks using start and end pattern matching."""
|
||
chunks = []
|
||
pos = 0
|
||
|
||
try:
|
||
# First, look for new format <function_calls> blocks
|
||
start_pattern = '<function_calls>'
|
||
end_pattern = '</function_calls>'
|
||
|
||
while pos < len(content):
|
||
# Find the next function_calls block
|
||
start_pos = content.find(start_pattern, pos)
|
||
if start_pos == -1:
|
||
break
|
||
|
||
# Find the matching end tag
|
||
end_pos = content.find(end_pattern, start_pos)
|
||
if end_pos == -1:
|
||
break
|
||
|
||
# Extract the complete block including tags
|
||
chunk_end = end_pos + len(end_pattern)
|
||
chunk = content[start_pos:chunk_end]
|
||
chunks.append(chunk)
|
||
|
||
# Move position past this chunk
|
||
pos = chunk_end
|
||
|
||
# If no new format found, fall back to old format for backwards compatibility
|
||
if not chunks:
|
||
pos = 0
|
||
while pos < len(content):
|
||
# Find the next tool tag
|
||
next_tag_start = -1
|
||
current_tag = None
|
||
|
||
# Find the earliest occurrence of any registered tool function name
|
||
# Check for available function names
|
||
available_functions = self.tool_registry.get_available_functions()
|
||
for func_name in available_functions.keys():
|
||
# Convert function name to potential tag name (underscore to dash)
|
||
tag_name = func_name.replace('_', '-')
|
||
start_pattern = f'<{tag_name}'
|
||
tag_pos = content.find(start_pattern, pos)
|
||
|
||
if tag_pos != -1 and (next_tag_start == -1 or tag_pos < next_tag_start):
|
||
next_tag_start = tag_pos
|
||
current_tag = tag_name
|
||
|
||
if next_tag_start == -1 or not current_tag:
|
||
break
|
||
|
||
# Find the matching end tag
|
||
end_pattern = f'</{current_tag}>'
|
||
tag_stack = []
|
||
chunk_start = next_tag_start
|
||
current_pos = next_tag_start
|
||
|
||
while current_pos < len(content):
|
||
# Look for next start or end tag of the same type
|
||
next_start = content.find(f'<{current_tag}', current_pos + 1)
|
||
next_end = content.find(end_pattern, current_pos)
|
||
|
||
if next_end == -1: # No closing tag found
|
||
break
|
||
|
||
if next_start != -1 and next_start < next_end:
|
||
# Found nested start tag
|
||
tag_stack.append(next_start)
|
||
current_pos = next_start + 1
|
||
else:
|
||
# Found end tag
|
||
if not tag_stack: # This is our matching end tag
|
||
chunk_end = next_end + len(end_pattern)
|
||
chunk = content[chunk_start:chunk_end]
|
||
chunks.append(chunk)
|
||
pos = chunk_end
|
||
break
|
||
else:
|
||
# Pop nested tag
|
||
tag_stack.pop()
|
||
current_pos = next_end + 1
|
||
|
||
if current_pos >= len(content): # Reached end without finding closing tag
|
||
break
|
||
|
||
pos = max(pos + 1, current_pos)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error extracting XML chunks: {e}")
|
||
logger.error(f"Content was: {content}")
|
||
self.trace.event(name="error_extracting_xml_chunks", level="ERROR", status_message=(f"Error extracting XML chunks: {e}"), metadata={"content": content})
|
||
|
||
return chunks
|
||
|
||
def _parse_xml_tool_call(self, xml_chunk: str) -> Optional[Tuple[Dict[str, Any], Dict[str, Any]]]:
|
||
"""Parse XML chunk into tool call format and return parsing details.
|
||
|
||
Returns:
|
||
Tuple of (tool_call, parsing_details) or None if parsing fails.
|
||
- tool_call: Dict with 'function_name', 'xml_tag_name', 'arguments'
|
||
- parsing_details: Dict with 'attributes', 'elements', 'text_content', 'root_content'
|
||
"""
|
||
try:
|
||
# Check if this is the new format (contains <function_calls>)
|
||
if '<function_calls>' in xml_chunk and '<invoke' in xml_chunk:
|
||
# Use the new XML parser
|
||
parsed_calls = self.xml_parser.parse_content(xml_chunk)
|
||
|
||
if not parsed_calls:
|
||
logger.error(f"No tool calls found in XML chunk: {xml_chunk}")
|
||
return None
|
||
|
||
# Take the first tool call (should only be one per chunk)
|
||
xml_tool_call = parsed_calls[0]
|
||
|
||
# Convert to the expected format
|
||
tool_call = {
|
||
"function_name": xml_tool_call.function_name,
|
||
"xml_tag_name": xml_tool_call.function_name.replace('_', '-'), # For backwards compatibility
|
||
"arguments": xml_tool_call.parameters
|
||
}
|
||
|
||
# Include the parsing details
|
||
parsing_details = xml_tool_call.parsing_details
|
||
parsing_details["raw_xml"] = xml_tool_call.raw_xml
|
||
|
||
logger.debug(f"Parsed new format tool call: {tool_call}")
|
||
return tool_call, parsing_details
|
||
|
||
# If not the expected <function_calls><invoke> format, return None
|
||
logger.error(f"XML chunk does not contain expected <function_calls><invoke> format: {xml_chunk}")
|
||
return None
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error parsing XML chunk: {e}")
|
||
logger.error(f"XML chunk was: {xml_chunk}")
|
||
self.trace.event(name="error_parsing_xml_chunk", level="ERROR", status_message=(f"Error parsing XML chunk: {e}"), metadata={"xml_chunk": xml_chunk})
|
||
return None
|
||
|
||
def _parse_xml_tool_calls(self, content: str) -> List[Dict[str, Any]]:
|
||
"""Parse XML tool calls from content string.
|
||
|
||
Returns:
|
||
List of dictionaries, each containing {'tool_call': ..., 'parsing_details': ...}
|
||
"""
|
||
parsed_data = []
|
||
|
||
try:
|
||
xml_chunks = self._extract_xml_chunks(content)
|
||
|
||
for xml_chunk in xml_chunks:
|
||
result = self._parse_xml_tool_call(xml_chunk)
|
||
if result:
|
||
tool_call, parsing_details = result
|
||
parsed_data.append({
|
||
"tool_call": tool_call,
|
||
"parsing_details": parsing_details
|
||
})
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error parsing XML tool calls: {e}", exc_info=True)
|
||
self.trace.event(name="error_parsing_xml_tool_calls", level="ERROR", status_message=(f"Error parsing XML tool calls: {e}"), metadata={"content": content})
|
||
|
||
return parsed_data
|
||
|
||
# Tool execution methods
|
||
async def _execute_tool(self, tool_call: Dict[str, Any]) -> ToolResult:
|
||
"""Execute a single tool call and return the result."""
|
||
span = self.trace.span(name=f"execute_tool.{tool_call['function_name']}", input=tool_call["arguments"])
|
||
try:
|
||
function_name = tool_call["function_name"]
|
||
arguments = tool_call["arguments"]
|
||
|
||
logger.info(f"Executing tool: {function_name} with arguments: {arguments}")
|
||
self.trace.event(name="executing_tool", level="DEFAULT", status_message=(f"Executing tool: {function_name} with arguments: {arguments}"))
|
||
|
||
if isinstance(arguments, str):
|
||
try:
|
||
arguments = safe_json_parse(arguments)
|
||
except json.JSONDecodeError:
|
||
arguments = {"text": arguments}
|
||
|
||
# Get available functions from tool registry
|
||
available_functions = self.tool_registry.get_available_functions()
|
||
|
||
# Look up the function by name
|
||
tool_fn = available_functions.get(function_name)
|
||
if not tool_fn:
|
||
logger.error(f"Tool function '{function_name}' not found in registry")
|
||
span.end(status_message="tool_not_found", level="ERROR")
|
||
return ToolResult(success=False, output=f"Tool function '{function_name}' not found")
|
||
|
||
logger.debug(f"Found tool function for '{function_name}', executing...")
|
||
result = await tool_fn(**arguments)
|
||
logger.info(f"Tool execution complete: {function_name} -> {result}")
|
||
span.end(status_message="tool_executed", output=result)
|
||
return result
|
||
except Exception as e:
|
||
logger.error(f"Error executing tool {tool_call['function_name']}: {str(e)}", exc_info=True)
|
||
span.end(status_message="tool_execution_error", output=f"Error executing tool: {str(e)}", level="ERROR")
|
||
return ToolResult(success=False, output=f"Error executing tool: {str(e)}")
|
||
|
||
async def _execute_tools(
|
||
self,
|
||
tool_calls: List[Dict[str, Any]],
|
||
execution_strategy: ToolExecutionStrategy = "sequential"
|
||
) -> List[Tuple[Dict[str, Any], ToolResult]]:
|
||
"""Execute tool calls with the specified strategy.
|
||
|
||
This is the main entry point for tool execution. It dispatches to the appropriate
|
||
execution method based on the provided strategy.
|
||
|
||
Args:
|
||
tool_calls: List of tool calls to execute
|
||
execution_strategy: Strategy for executing tools:
|
||
- "sequential": Execute tools one after another, waiting for each to complete
|
||
- "parallel": Execute all tools simultaneously for better performance
|
||
|
||
Returns:
|
||
List of tuples containing the original tool call and its result
|
||
"""
|
||
logger.info(f"Executing {len(tool_calls)} tools with strategy: {execution_strategy}")
|
||
self.trace.event(name="executing_tools_with_strategy", level="DEFAULT", status_message=(f"Executing {len(tool_calls)} tools with strategy: {execution_strategy}"))
|
||
|
||
if execution_strategy == "sequential":
|
||
return await self._execute_tools_sequentially(tool_calls)
|
||
elif execution_strategy == "parallel":
|
||
return await self._execute_tools_in_parallel(tool_calls)
|
||
else:
|
||
logger.warning(f"Unknown execution strategy: {execution_strategy}, falling back to sequential")
|
||
return await self._execute_tools_sequentially(tool_calls)
|
||
|
||
async def _execute_tools_sequentially(self, tool_calls: List[Dict[str, Any]]) -> List[Tuple[Dict[str, Any], ToolResult]]:
|
||
"""Execute tool calls sequentially and return results.
|
||
|
||
This method executes tool calls one after another, waiting for each tool to complete
|
||
before starting the next one. This is useful when tools have dependencies on each other.
|
||
|
||
Args:
|
||
tool_calls: List of tool calls to execute
|
||
|
||
Returns:
|
||
List of tuples containing the original tool call and its result
|
||
"""
|
||
if not tool_calls:
|
||
return []
|
||
|
||
try:
|
||
tool_names = [t.get('function_name', 'unknown') for t in tool_calls]
|
||
logger.info(f"Executing {len(tool_calls)} tools sequentially: {tool_names}")
|
||
self.trace.event(name="executing_tools_sequentially", level="DEFAULT", status_message=(f"Executing {len(tool_calls)} tools sequentially: {tool_names}"))
|
||
|
||
results = []
|
||
for index, tool_call in enumerate(tool_calls):
|
||
tool_name = tool_call.get('function_name', 'unknown')
|
||
logger.debug(f"Executing tool {index+1}/{len(tool_calls)}: {tool_name}")
|
||
|
||
try:
|
||
result = await self._execute_tool(tool_call)
|
||
results.append((tool_call, result))
|
||
logger.debug(f"Completed tool {tool_name} with success={result.success}")
|
||
|
||
# Check if this is a terminating tool (ask or complete)
|
||
if tool_name in ['ask', 'complete']:
|
||
logger.info(f"Terminating tool '{tool_name}' executed. Stopping further tool execution.")
|
||
self.trace.event(name="terminating_tool_executed", level="DEFAULT", status_message=(f"Terminating tool '{tool_name}' executed. Stopping further tool execution."))
|
||
break # Stop executing remaining tools
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error executing tool {tool_name}: {str(e)}")
|
||
self.trace.event(name="error_executing_tool", level="ERROR", status_message=(f"Error executing tool {tool_name}: {str(e)}"))
|
||
error_result = ToolResult(success=False, output=f"Error executing tool: {str(e)}")
|
||
results.append((tool_call, error_result))
|
||
|
||
logger.info(f"Sequential execution completed for {len(results)} tools (out of {len(tool_calls)} total)")
|
||
self.trace.event(name="sequential_execution_completed", level="DEFAULT", status_message=(f"Sequential execution completed for {len(results)} tools (out of {len(tool_calls)} total)"))
|
||
return results
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error in sequential tool execution: {str(e)}", exc_info=True)
|
||
# Return partial results plus error results for remaining tools
|
||
completed_results = results if 'results' in locals() else []
|
||
completed_tool_names = [r[0].get('function_name', 'unknown') for r in completed_results]
|
||
remaining_tools = [t for t in tool_calls if t.get('function_name', 'unknown') not in completed_tool_names]
|
||
|
||
# Add error results for remaining tools
|
||
error_results = [(tool, ToolResult(success=False, output=f"Execution error: {str(e)}"))
|
||
for tool in remaining_tools]
|
||
|
||
return completed_results + error_results
|
||
|
||
async def _execute_tools_in_parallel(self, tool_calls: List[Dict[str, Any]]) -> List[Tuple[Dict[str, Any], ToolResult]]:
|
||
"""Execute tool calls in parallel and return results.
|
||
|
||
This method executes all tool calls simultaneously using asyncio.gather, which
|
||
can significantly improve performance when executing multiple independent tools.
|
||
|
||
Args:
|
||
tool_calls: List of tool calls to execute
|
||
|
||
Returns:
|
||
List of tuples containing the original tool call and its result
|
||
"""
|
||
if not tool_calls:
|
||
return []
|
||
|
||
try:
|
||
tool_names = [t.get('function_name', 'unknown') for t in tool_calls]
|
||
logger.info(f"Executing {len(tool_calls)} tools in parallel: {tool_names}")
|
||
self.trace.event(name="executing_tools_in_parallel", level="DEFAULT", status_message=(f"Executing {len(tool_calls)} tools in parallel: {tool_names}"))
|
||
|
||
# Create tasks for all tool calls
|
||
tasks = [self._execute_tool(tool_call) for tool_call in tool_calls]
|
||
|
||
# Execute all tasks concurrently with error handling
|
||
results = await asyncio.gather(*tasks, return_exceptions=True)
|
||
|
||
# Process results and handle any exceptions
|
||
processed_results = []
|
||
for i, (tool_call, result) in enumerate(zip(tool_calls, results)):
|
||
if isinstance(result, Exception):
|
||
logger.error(f"Error executing tool {tool_call.get('function_name', 'unknown')}: {str(result)}")
|
||
self.trace.event(name="error_executing_tool", level="ERROR", status_message=(f"Error executing tool {tool_call.get('function_name', 'unknown')}: {str(result)}"))
|
||
# Create error result
|
||
error_result = ToolResult(success=False, output=f"Error executing tool: {str(result)}")
|
||
processed_results.append((tool_call, error_result))
|
||
else:
|
||
processed_results.append((tool_call, result))
|
||
|
||
logger.info(f"Parallel execution completed for {len(tool_calls)} tools")
|
||
self.trace.event(name="parallel_execution_completed", level="DEFAULT", status_message=(f"Parallel execution completed for {len(tool_calls)} tools"))
|
||
return processed_results
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error in parallel tool execution: {str(e)}", exc_info=True)
|
||
self.trace.event(name="error_in_parallel_tool_execution", level="ERROR", status_message=(f"Error in parallel tool execution: {str(e)}"))
|
||
# Return error results for all tools if the gather itself fails
|
||
return [(tool_call, ToolResult(success=False, output=f"Execution error: {str(e)}"))
|
||
for tool_call in tool_calls]
|
||
|
||
async def _add_tool_result(
|
||
self,
|
||
thread_id: str,
|
||
tool_call: Dict[str, Any],
|
||
result: ToolResult,
|
||
strategy: Union[XmlAddingStrategy, str] = "assistant_message",
|
||
assistant_message_id: Optional[str] = None,
|
||
parsing_details: Optional[Dict[str, Any]] = None
|
||
) -> Optional[Dict[str, Any]]: # Return the full message object
|
||
"""Add a tool result to the conversation thread based on the specified format.
|
||
|
||
This method formats tool results and adds them to the conversation history,
|
||
making them visible to the LLM in subsequent interactions. Results can be
|
||
added either as native tool messages (OpenAI format) or as XML-wrapped content
|
||
with a specified role (user or assistant).
|
||
|
||
Args:
|
||
thread_id: ID of the conversation thread
|
||
tool_call: The original tool call that produced this result
|
||
result: The result from the tool execution
|
||
strategy: How to add XML tool results to the conversation
|
||
("user_message", "assistant_message", or "inline_edit")
|
||
assistant_message_id: ID of the assistant message that generated this tool call
|
||
parsing_details: Detailed parsing info for XML calls (attributes, elements, etc.)
|
||
"""
|
||
try:
|
||
message_obj = None # Initialize message_obj
|
||
|
||
# Create metadata with assistant_message_id if provided
|
||
metadata = {}
|
||
if assistant_message_id:
|
||
metadata["assistant_message_id"] = assistant_message_id
|
||
logger.info(f"Linking tool result to assistant message: {assistant_message_id}")
|
||
self.trace.event(name="linking_tool_result_to_assistant_message", level="DEFAULT", status_message=(f"Linking tool result to assistant message: {assistant_message_id}"))
|
||
|
||
# --- Add parsing details to metadata if available ---
|
||
if parsing_details:
|
||
metadata["parsing_details"] = parsing_details
|
||
logger.info("Adding parsing_details to tool result metadata")
|
||
self.trace.event(name="adding_parsing_details_to_tool_result_metadata", level="DEFAULT", status_message=(f"Adding parsing_details to tool result metadata"), metadata={"parsing_details": parsing_details})
|
||
# ---
|
||
|
||
# Check if this is a native function call (has id field)
|
||
if "id" in tool_call:
|
||
# Format as a proper tool message according to OpenAI spec
|
||
function_name = tool_call.get("function_name", "")
|
||
|
||
# Format the tool result content - tool role needs string content
|
||
if isinstance(result, str):
|
||
content = result
|
||
elif hasattr(result, 'output'):
|
||
# If it's a ToolResult object
|
||
if isinstance(result.output, dict) or isinstance(result.output, list):
|
||
# If output is already a dict or list, convert to JSON string
|
||
content = json.dumps(result.output)
|
||
else:
|
||
# Otherwise just use the string representation
|
||
content = str(result.output)
|
||
else:
|
||
# Fallback to string representation of the whole result
|
||
content = str(result)
|
||
|
||
logger.info(f"Formatted tool result content: {content[:100]}...")
|
||
self.trace.event(name="formatted_tool_result_content", level="DEFAULT", status_message=(f"Formatted tool result content: {content[:100]}..."))
|
||
|
||
# Create the tool response message with proper format
|
||
tool_message = {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call["id"],
|
||
"name": function_name,
|
||
"content": content
|
||
}
|
||
|
||
logger.info(f"Adding native tool result for tool_call_id={tool_call['id']} with role=tool")
|
||
self.trace.event(name="adding_native_tool_result_for_tool_call_id", level="DEFAULT", status_message=(f"Adding native tool result for tool_call_id={tool_call['id']} with role=tool"))
|
||
|
||
# Add as a tool message to the conversation history
|
||
# This makes the result visible to the LLM in the next turn
|
||
message_obj = await self.add_message(
|
||
thread_id=thread_id,
|
||
type="tool", # Special type for tool responses
|
||
content=tool_message,
|
||
is_llm_message=True,
|
||
metadata=metadata
|
||
)
|
||
return message_obj # Return the full message object
|
||
|
||
# For XML and other non-native tools, use the new structured format
|
||
# Determine message role based on strategy
|
||
result_role = "user" if strategy == "user_message" else "assistant"
|
||
|
||
# Create two versions of the structured result
|
||
# 1. Rich version for the frontend
|
||
structured_result_for_frontend = self._create_structured_tool_result(tool_call, result, parsing_details, for_llm=False)
|
||
# 2. Concise version for the LLM
|
||
structured_result_for_llm = self._create_structured_tool_result(tool_call, result, parsing_details, for_llm=True)
|
||
|
||
# Add the message with the appropriate role to the conversation history
|
||
# This allows the LLM to see the tool result in subsequent interactions
|
||
result_message_for_llm = {
|
||
"role": result_role,
|
||
"content": json.dumps(structured_result_for_llm)
|
||
}
|
||
|
||
# Add rich content to metadata for frontend use
|
||
if metadata is None:
|
||
metadata = {}
|
||
metadata['frontend_content'] = structured_result_for_frontend
|
||
|
||
message_obj = await self._add_message_with_agent_info(
|
||
thread_id=thread_id,
|
||
type="tool",
|
||
content=result_message_for_llm, # Save the LLM-friendly version
|
||
is_llm_message=True,
|
||
metadata=metadata
|
||
)
|
||
|
||
# If the message was saved, modify it in-memory for the frontend before returning
|
||
if message_obj:
|
||
# The frontend expects the rich content in the 'content' field.
|
||
# The DB has the rich content in metadata.frontend_content.
|
||
# Let's reconstruct the message for yielding.
|
||
message_for_yield = message_obj.copy()
|
||
message_for_yield['content'] = structured_result_for_frontend
|
||
return message_for_yield
|
||
|
||
return message_obj # Return the modified message object
|
||
except Exception as e:
|
||
logger.error(f"Error adding tool result: {str(e)}", exc_info=True)
|
||
self.trace.event(name="error_adding_tool_result", level="ERROR", status_message=(f"Error adding tool result: {str(e)}"), metadata={"tool_call": tool_call, "result": result, "strategy": strategy, "assistant_message_id": assistant_message_id, "parsing_details": parsing_details})
|
||
# Fallback to a simple message
|
||
try:
|
||
fallback_message = {
|
||
"role": "user",
|
||
"content": str(result)
|
||
}
|
||
message_obj = await self.add_message(
|
||
thread_id=thread_id,
|
||
type="tool",
|
||
content=fallback_message,
|
||
is_llm_message=True,
|
||
metadata={"assistant_message_id": assistant_message_id} if assistant_message_id else {}
|
||
)
|
||
return message_obj # Return the full message object
|
||
except Exception as e2:
|
||
logger.error(f"Failed even with fallback message: {str(e2)}", exc_info=True)
|
||
self.trace.event(name="failed_even_with_fallback_message", level="ERROR", status_message=(f"Failed even with fallback message: {str(e2)}"), metadata={"tool_call": tool_call, "result": result, "strategy": strategy, "assistant_message_id": assistant_message_id, "parsing_details": parsing_details})
|
||
return None # Return None on error
|
||
|
||
def _create_structured_tool_result(self, tool_call: Dict[str, Any], result: ToolResult, parsing_details: Optional[Dict[str, Any]] = None, for_llm: bool = False):
|
||
"""Create a structured tool result format that's tool-agnostic and provides rich information.
|
||
|
||
Args:
|
||
tool_call: The original tool call that was executed
|
||
result: The result from the tool execution
|
||
parsing_details: Optional parsing details for XML calls
|
||
for_llm: If True, creates a concise version for the LLM context.
|
||
|
||
Returns:
|
||
Structured dictionary containing tool execution information
|
||
"""
|
||
# Extract tool information
|
||
function_name = tool_call.get("function_name", "unknown")
|
||
xml_tag_name = tool_call.get("xml_tag_name")
|
||
arguments = tool_call.get("arguments", {})
|
||
tool_call_id = tool_call.get("id")
|
||
|
||
# Process the output - if it's a JSON string, parse it back to an object
|
||
output = result.output if hasattr(result, 'output') else str(result)
|
||
if isinstance(output, str):
|
||
try:
|
||
# Try to parse as JSON to provide structured data to frontend
|
||
parsed_output = safe_json_parse(output)
|
||
# If parsing succeeded and we got a dict/list, use the parsed version
|
||
if isinstance(parsed_output, (dict, list)):
|
||
output = parsed_output
|
||
# Otherwise keep the original string
|
||
except Exception:
|
||
# If parsing fails, keep the original string
|
||
pass
|
||
|
||
output_to_use = output
|
||
# If this is for the LLM and it's an edit_file tool, create a concise output
|
||
if for_llm and function_name == 'edit_file' and isinstance(output, dict):
|
||
# The frontend needs original_content and updated_content to render diffs.
|
||
# The concise version for the LLM was causing issues.
|
||
# We will now pass the full output, and rely on the ContextManager to truncate if needed.
|
||
output_to_use = output
|
||
|
||
# Create the structured result
|
||
structured_result_v1 = {
|
||
"tool_execution": {
|
||
"function_name": function_name,
|
||
"xml_tag_name": xml_tag_name,
|
||
"tool_call_id": tool_call_id,
|
||
"arguments": arguments,
|
||
"result": {
|
||
"success": result.success if hasattr(result, 'success') else True,
|
||
"output": output_to_use, # This will be either rich or concise based on `for_llm`
|
||
"error": getattr(result, 'error', None) if hasattr(result, 'error') else None
|
||
},
|
||
}
|
||
}
|
||
|
||
return structured_result_v1
|
||
|
||
def _create_tool_context(self, tool_call: Dict[str, Any], tool_index: int, assistant_message_id: Optional[str] = None, parsing_details: Optional[Dict[str, Any]] = None) -> ToolExecutionContext:
|
||
"""Create a tool execution context with display name and parsing details populated."""
|
||
context = ToolExecutionContext(
|
||
tool_call=tool_call,
|
||
tool_index=tool_index,
|
||
assistant_message_id=assistant_message_id,
|
||
parsing_details=parsing_details
|
||
)
|
||
|
||
# Set function_name and xml_tag_name fields
|
||
if "xml_tag_name" in tool_call:
|
||
context.xml_tag_name = tool_call["xml_tag_name"]
|
||
context.function_name = tool_call.get("function_name", tool_call["xml_tag_name"])
|
||
else:
|
||
# For non-XML tools, use function name directly
|
||
context.function_name = tool_call.get("function_name", "unknown")
|
||
context.xml_tag_name = None
|
||
|
||
return context
|
||
|
||
async def _yield_and_save_tool_started(self, context: ToolExecutionContext, thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]:
|
||
"""Formats, saves, and returns a tool started status message."""
|
||
tool_name = context.xml_tag_name or context.function_name
|
||
content = {
|
||
"role": "assistant", "status_type": "tool_started",
|
||
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name,
|
||
"message": f"Starting execution of {tool_name}", "tool_index": context.tool_index,
|
||
"tool_call_id": context.tool_call.get("id") # Include tool_call ID if native
|
||
}
|
||
metadata = {"thread_run_id": thread_run_id}
|
||
saved_message_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata
|
||
)
|
||
return saved_message_obj # Return the full object (or None if saving failed)
|
||
|
||
async def _yield_and_save_tool_completed(self, context: ToolExecutionContext, tool_message_id: Optional[str], thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]:
|
||
"""Formats, saves, and returns a tool completed/failed status message."""
|
||
if not context.result:
|
||
# Delegate to error saving if result is missing (e.g., execution failed)
|
||
return await self._yield_and_save_tool_error(context, thread_id, thread_run_id)
|
||
|
||
tool_name = context.xml_tag_name or context.function_name
|
||
status_type = "tool_completed" if context.result.success else "tool_failed"
|
||
message_text = f"Tool {tool_name} {'completed successfully' if context.result.success else 'failed'}"
|
||
|
||
content = {
|
||
"role": "assistant", "status_type": status_type,
|
||
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name,
|
||
"message": message_text, "tool_index": context.tool_index,
|
||
"tool_call_id": context.tool_call.get("id")
|
||
}
|
||
metadata = {"thread_run_id": thread_run_id}
|
||
# Add the *actual* tool result message ID to the metadata if available and successful
|
||
if context.result.success and tool_message_id:
|
||
metadata["linked_tool_result_message_id"] = tool_message_id
|
||
|
||
# <<< ADDED: Signal if this is a terminating tool >>>
|
||
if context.function_name in ['ask', 'complete']:
|
||
metadata["agent_should_terminate"] = "true"
|
||
logger.info(f"Marking tool status for '{context.function_name}' with termination signal.")
|
||
self.trace.event(name="marking_tool_status_for_termination", level="DEFAULT", status_message=(f"Marking tool status for '{context.function_name}' with termination signal."))
|
||
# <<< END ADDED >>>
|
||
|
||
saved_message_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata
|
||
)
|
||
return saved_message_obj
|
||
|
||
async def _yield_and_save_tool_error(self, context: ToolExecutionContext, thread_id: str, thread_run_id: str) -> Optional[Dict[str, Any]]:
|
||
"""Formats, saves, and returns a tool error status message."""
|
||
error_msg = str(context.error) if context.error else "Unknown error during tool execution"
|
||
tool_name = context.xml_tag_name or context.function_name
|
||
content = {
|
||
"role": "assistant", "status_type": "tool_error",
|
||
"function_name": context.function_name, "xml_tag_name": context.xml_tag_name,
|
||
"message": f"Error executing tool {tool_name}: {error_msg}",
|
||
"tool_index": context.tool_index,
|
||
"tool_call_id": context.tool_call.get("id")
|
||
}
|
||
metadata = {"thread_run_id": thread_run_id}
|
||
# Save the status message with is_llm_message=False
|
||
saved_message_obj = await self.add_message(
|
||
thread_id=thread_id, type="status", content=content, is_llm_message=False, metadata=metadata
|
||
)
|
||
return saved_message_obj
|