mirror of https://github.com/kortix-ai/suna.git
663 lines
28 KiB
Python
663 lines
28 KiB
Python
import json
|
||
import logging
|
||
import asyncio
|
||
import os
|
||
from typing import List, Dict, Any, Optional, Callable, Type, Union, AsyncGenerator
|
||
from agentpress.llm import make_llm_api_call
|
||
from agentpress.tool import Tool, ToolResult
|
||
from agentpress.tool_registry import ToolRegistry
|
||
from agentpress.tool_parser import ToolParser, StandardToolParser
|
||
from agentpress.tool_executor import ToolExecutor, StandardToolExecutor, SequentialToolExecutor
|
||
import uuid
|
||
|
||
class ThreadManager:
|
||
"""
|
||
Manages conversation threads with LLM models and tool execution.
|
||
|
||
The ThreadManager handles:
|
||
- Creating and managing conversation threads
|
||
- Adding/retrieving messages in threads
|
||
- Executing LLM calls with optional tool usage
|
||
- Managing tool registration and execution
|
||
- Supporting both streaming and non-streaming responses
|
||
|
||
Attributes:
|
||
threads_dir (str): Directory where thread files are stored
|
||
tool_registry (ToolRegistry): Registry for managing available tools
|
||
tool_parser (ToolParser): Parser for handling tool calls/responses
|
||
tool_executor (ToolExecutor): Executor for running tool functions
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
threads_dir: str = "threads",
|
||
tool_parser: Optional[ToolParser] = None,
|
||
tool_executor: Optional[ToolExecutor] = None
|
||
):
|
||
"""Initialize ThreadManager with optional custom tool parser and executor.
|
||
|
||
Args:
|
||
threads_dir (str): Directory to store thread files
|
||
tool_parser (Optional[ToolParser]): Custom tool parser implementation
|
||
tool_executor (Optional[ToolExecutor]): Custom tool executor implementation
|
||
"""
|
||
self.threads_dir = threads_dir
|
||
self.tool_registry = ToolRegistry()
|
||
self.tool_parser = tool_parser or StandardToolParser()
|
||
self.tool_executor = tool_executor or StandardToolExecutor()
|
||
os.makedirs(self.threads_dir, exist_ok=True)
|
||
|
||
def add_tool(self, tool_class: Type[Tool], function_names: Optional[List[str]] = None, **kwargs):
|
||
"""
|
||
Add a tool to the ThreadManager.
|
||
If function_names is provided, only register those specific functions.
|
||
If function_names is None, register all functions from the tool.
|
||
|
||
Args:
|
||
tool_class: The tool class to register
|
||
function_names: Optional list of function names to register
|
||
**kwargs: Additional keyword arguments passed to tool initialization
|
||
"""
|
||
self.tool_registry.register_tool(tool_class, function_names, **kwargs)
|
||
|
||
async def create_thread(self) -> str:
|
||
"""
|
||
Create a new conversation thread.
|
||
|
||
Returns:
|
||
str: Unique thread ID for the created thread
|
||
"""
|
||
thread_id = str(uuid.uuid4())
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
with open(thread_path, 'w') as f:
|
||
json.dump({"messages": []}, f)
|
||
return thread_id
|
||
|
||
async def add_message(self, thread_id: str, message_data: Dict[str, Any], images: Optional[List[Dict[str, Any]]] = None):
|
||
"""
|
||
Add a message to an existing thread.
|
||
|
||
Args:
|
||
thread_id (str): ID of the thread to add message to
|
||
message_data (Dict[str, Any]): Message data including role and content
|
||
images (Optional[List[Dict[str, Any]]]): List of image data to include
|
||
Each image dict should contain 'content_type' and 'base64' keys
|
||
|
||
Raises:
|
||
Exception: If message addition fails
|
||
"""
|
||
logging.info(f"Adding message to thread {thread_id} with images: {images}")
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
|
||
try:
|
||
with open(thread_path, 'r') as f:
|
||
thread_data = json.load(f)
|
||
|
||
messages = thread_data["messages"]
|
||
|
||
if message_data['role'] == 'user':
|
||
last_assistant_index = next((i for i in reversed(range(len(messages))) if messages[i]['role'] == 'assistant' and 'tool_calls' in messages[i]), None)
|
||
|
||
if last_assistant_index is not None:
|
||
tool_call_count = len(messages[last_assistant_index]['tool_calls'])
|
||
tool_response_count = sum(1 for msg in messages[last_assistant_index+1:] if msg['role'] == 'tool')
|
||
|
||
if tool_call_count != tool_response_count:
|
||
await self.cleanup_incomplete_tool_calls(thread_id)
|
||
|
||
for key, value in message_data.items():
|
||
if isinstance(value, ToolResult):
|
||
message_data[key] = str(value)
|
||
|
||
if images:
|
||
if isinstance(message_data['content'], str):
|
||
message_data['content'] = [{"type": "text", "text": message_data['content']}]
|
||
elif not isinstance(message_data['content'], list):
|
||
message_data['content'] = []
|
||
|
||
for image in images:
|
||
image_content = {
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": f"data:{image['content_type']};base64,{image['base64']}",
|
||
"detail": "high"
|
||
}
|
||
}
|
||
message_data['content'].append(image_content)
|
||
|
||
messages.append(message_data)
|
||
thread_data["messages"] = messages
|
||
|
||
with open(thread_path, 'w') as f:
|
||
json.dump(thread_data, f)
|
||
|
||
logging.info(f"Message added to thread {thread_id}: {message_data}")
|
||
except Exception as e:
|
||
logging.error(f"Failed to add message to thread {thread_id}: {e}")
|
||
raise e
|
||
|
||
async def list_messages(self, thread_id: str, hide_tool_msgs: bool = False, only_latest_assistant: bool = False, regular_list: bool = True) -> List[Dict[str, Any]]:
|
||
"""
|
||
Retrieve messages from a thread with optional filtering.
|
||
|
||
Args:
|
||
thread_id (str): ID of the thread to retrieve messages from
|
||
hide_tool_msgs (bool): If True, excludes tool messages and tool calls
|
||
only_latest_assistant (bool): If True, returns only the most recent assistant message
|
||
regular_list (bool): If True, only includes standard message types
|
||
|
||
Returns:
|
||
List[Dict[str, Any]]: List of messages matching the filter criteria
|
||
"""
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
|
||
try:
|
||
with open(thread_path, 'r') as f:
|
||
thread_data = json.load(f)
|
||
messages = thread_data["messages"]
|
||
|
||
if only_latest_assistant:
|
||
for msg in reversed(messages):
|
||
if msg.get('role') == 'assistant':
|
||
return [msg]
|
||
return []
|
||
|
||
filtered_messages = messages
|
||
|
||
if hide_tool_msgs:
|
||
filtered_messages = [
|
||
{k: v for k, v in msg.items() if k != 'tool_calls'}
|
||
for msg in filtered_messages
|
||
if msg.get('role') != 'tool'
|
||
]
|
||
|
||
if regular_list:
|
||
filtered_messages = [
|
||
msg for msg in filtered_messages
|
||
if msg.get('role') in ['system', 'assistant', 'tool', 'user']
|
||
]
|
||
|
||
return filtered_messages
|
||
except FileNotFoundError:
|
||
return []
|
||
|
||
async def cleanup_incomplete_tool_calls(self, thread_id: str):
|
||
messages = await self.list_messages(thread_id)
|
||
last_assistant_message = next((m for m in reversed(messages) if m['role'] == 'assistant' and 'tool_calls' in m), None)
|
||
|
||
if last_assistant_message:
|
||
tool_calls = last_assistant_message.get('tool_calls', [])
|
||
tool_responses = [m for m in messages[messages.index(last_assistant_message)+1:] if m['role'] == 'tool']
|
||
|
||
if len(tool_calls) != len(tool_responses):
|
||
failed_tool_results = []
|
||
for tool_call in tool_calls[len(tool_responses):]:
|
||
failed_tool_result = {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": tool_call['function']['name'],
|
||
"content": "ToolResult(success=False, output='Execution interrupted. Session was stopped.')"
|
||
}
|
||
failed_tool_results.append(failed_tool_result)
|
||
|
||
assistant_index = messages.index(last_assistant_message)
|
||
messages[assistant_index+1:assistant_index+1] = failed_tool_results
|
||
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
with open(thread_path, 'w') as f:
|
||
json.dump({"messages": messages}, f)
|
||
|
||
return True
|
||
return False
|
||
|
||
async def run_thread(
|
||
self,
|
||
thread_id: str,
|
||
system_message: Dict[str, Any],
|
||
model_name: str,
|
||
temperature: float = 0,
|
||
max_tokens: Optional[int] = None,
|
||
tool_choice: str = "auto",
|
||
temporary_message: Optional[Dict[str, Any]] = None,
|
||
use_tools: bool = False,
|
||
execute_tools_async: bool = True,
|
||
execute_tool_calls: bool = True,
|
||
stream: bool = False,
|
||
execute_tools_on_stream: bool = False
|
||
) -> Union[Dict[str, Any], AsyncGenerator]:
|
||
"""
|
||
Run a conversation thread with the specified parameters.
|
||
|
||
Args:
|
||
thread_id (str): ID of the thread to run
|
||
system_message (Dict[str, Any]): System message to guide model behavior
|
||
model_name (str): Name of the LLM model to use
|
||
temperature (float): Sampling temperature for model responses
|
||
max_tokens (Optional[int]): Maximum tokens in model response
|
||
tool_choice (str): How tools should be selected ('auto' or 'none')
|
||
temporary_message (Optional[Dict[str, Any]]): Extra temporary message to include at the end of the LLM api request. Without adding it permanently to the Thread.
|
||
use_tools (bool): Whether to enable tool usage
|
||
execute_tools_async (bool): Whether to execute tools concurrently or synchronously if off.
|
||
execute_tool_calls (bool): Whether to execute parsed tool calls
|
||
stream (bool): Whether to stream the response
|
||
execute_tools_on_stream (bool): Whether to execute tools during streaming, or waiting for full response before executing.
|
||
|
||
Returns:
|
||
Union[Dict[str, Any], AsyncGenerator]:
|
||
- Dict with response data for non-streaming
|
||
- AsyncGenerator yielding chunks for streaming
|
||
|
||
Raises:
|
||
Exception: If API call or tool execution fails
|
||
"""
|
||
messages = await self.list_messages(thread_id)
|
||
prepared_messages = [system_message] + messages
|
||
|
||
if temporary_message:
|
||
prepared_messages.append(temporary_message)
|
||
|
||
tools = self.tool_registry.get_all_tool_schemas() if use_tools else None
|
||
|
||
try:
|
||
llm_response = await make_llm_api_call(
|
||
prepared_messages,
|
||
model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
tools=tools,
|
||
tool_choice=tool_choice if use_tools else None,
|
||
stream=stream
|
||
)
|
||
|
||
if stream:
|
||
return self._handle_streaming_response(
|
||
thread_id=thread_id,
|
||
response_stream=llm_response,
|
||
use_tools=use_tools,
|
||
execute_tool_calls=execute_tool_calls,
|
||
execute_tools_async=execute_tools_async,
|
||
execute_tools_on_stream=execute_tools_on_stream
|
||
)
|
||
|
||
# For non-streaming, handle the response
|
||
if use_tools and execute_tool_calls:
|
||
await self.handle_response_with_tools(thread_id, llm_response, execute_tools_async)
|
||
else:
|
||
await self.handle_response_without_tools(thread_id, llm_response)
|
||
|
||
return {
|
||
"llm_response": llm_response,
|
||
"run_thread_params": {
|
||
"thread_id": thread_id,
|
||
"system_message": system_message,
|
||
"model_name": model_name,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"tool_choice": tool_choice,
|
||
"temporary_message": temporary_message,
|
||
"execute_tools_async": execute_tools_async,
|
||
"execute_tool_calls": execute_tool_calls,
|
||
"use_tools": use_tools,
|
||
"stream": stream,
|
||
"execute_tools_on_stream": execute_tools_on_stream
|
||
}
|
||
}
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error in API call: {str(e)}")
|
||
return {
|
||
"status": "error",
|
||
"message": str(e),
|
||
"run_thread_params": {
|
||
"thread_id": thread_id,
|
||
"system_message": system_message,
|
||
"model_name": model_name,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"tool_choice": tool_choice,
|
||
"temporary_message": temporary_message,
|
||
"execute_tools_async": execute_tools_async,
|
||
"execute_tool_calls": execute_tool_calls,
|
||
"use_tools": use_tools,
|
||
"stream": stream,
|
||
"execute_tools_on_stream": execute_tools_on_stream
|
||
}
|
||
}
|
||
|
||
async def _handle_streaming_response(
|
||
self,
|
||
thread_id: str,
|
||
response_stream: AsyncGenerator,
|
||
use_tools: bool,
|
||
execute_tool_calls: bool,
|
||
execute_tools_async: bool,
|
||
execute_tools_on_stream: bool
|
||
) -> AsyncGenerator:
|
||
"""Handle streaming response and tool execution."""
|
||
tool_calls_buffer = {} # Buffer to store tool calls by index
|
||
executed_tool_calls = set() # Track which tool calls have been executed
|
||
available_functions = self.get_available_functions() if use_tools else {}
|
||
content_buffer = "" # Buffer for content
|
||
current_assistant_message = None # Track current assistant message
|
||
pending_tool_calls = [] # Store tool calls for non-streaming execution
|
||
|
||
async def execute_tool_calls(tool_calls):
|
||
if execute_tools_async:
|
||
return await self.tool_executor.execute_tool_calls(
|
||
tool_calls=tool_calls,
|
||
available_functions=available_functions,
|
||
thread_id=thread_id,
|
||
executed_tool_calls=executed_tool_calls
|
||
)
|
||
else:
|
||
sequential_executor = SequentialToolExecutor()
|
||
return await sequential_executor.execute_tool_calls(
|
||
tool_calls=tool_calls,
|
||
available_functions=available_functions,
|
||
thread_id=thread_id,
|
||
executed_tool_calls=executed_tool_calls
|
||
)
|
||
|
||
async def process_chunk(chunk):
|
||
nonlocal content_buffer, current_assistant_message, pending_tool_calls
|
||
|
||
# Parse the chunk using tool parser
|
||
parsed_message, is_complete = await self.tool_parser.parse_stream(chunk, tool_calls_buffer)
|
||
|
||
# If we have a message with tool calls
|
||
if parsed_message and 'tool_calls' in parsed_message and parsed_message['tool_calls']:
|
||
# Update or create assistant message
|
||
if not current_assistant_message:
|
||
current_assistant_message = parsed_message
|
||
await self.add_message(thread_id, current_assistant_message)
|
||
else:
|
||
current_assistant_message['tool_calls'] = parsed_message['tool_calls']
|
||
await self._update_message(thread_id, current_assistant_message)
|
||
|
||
# Get new tool calls that haven't been executed
|
||
new_tool_calls = [
|
||
tool_call for tool_call in parsed_message['tool_calls']
|
||
if tool_call['id'] not in executed_tool_calls
|
||
]
|
||
|
||
if new_tool_calls:
|
||
if execute_tools_on_stream:
|
||
# Execute tools immediately during streaming
|
||
tool_results = await execute_tool_calls(new_tool_calls)
|
||
for result in tool_results:
|
||
await self.add_message(thread_id, result)
|
||
executed_tool_calls.add(result['tool_call_id'])
|
||
else:
|
||
# Store tool calls for later execution
|
||
pending_tool_calls.extend(new_tool_calls)
|
||
|
||
# Handle end of response
|
||
if chunk.choices[0].finish_reason:
|
||
if not execute_tools_on_stream and pending_tool_calls:
|
||
# Execute all pending tool calls at the end
|
||
tool_results = await execute_tool_calls(pending_tool_calls)
|
||
for result in tool_results:
|
||
await self.add_message(thread_id, result)
|
||
executed_tool_calls.add(result['tool_call_id'])
|
||
pending_tool_calls.clear()
|
||
|
||
return chunk
|
||
|
||
async for chunk in response_stream:
|
||
processed_chunk = await process_chunk(chunk)
|
||
yield processed_chunk
|
||
|
||
async def _update_message(self, thread_id: str, message: Dict[str, Any]):
|
||
"""Update an existing message in the thread."""
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
try:
|
||
with open(thread_path, 'r') as f:
|
||
thread_data = json.load(f)
|
||
|
||
# Find and update the last assistant message
|
||
for i in reversed(range(len(thread_data["messages"]))):
|
||
if thread_data["messages"][i]["role"] == "assistant":
|
||
thread_data["messages"][i] = message
|
||
break
|
||
|
||
with open(thread_path, 'w') as f:
|
||
json.dump(thread_data, f)
|
||
except Exception as e:
|
||
logging.error(f"Error updating message in thread {thread_id}: {e}")
|
||
raise e
|
||
|
||
async def handle_response_without_tools(self, thread_id: str, response: Any):
|
||
response_content = response.choices[0].message['content']
|
||
await self.add_message(thread_id, {"role": "assistant", "content": response_content})
|
||
|
||
async def handle_response_with_tools(self, thread_id: str, response: Any, execute_tools_async: bool):
|
||
try:
|
||
# Parse the response using the tool parser
|
||
assistant_message = await self.tool_parser.parse_response(response)
|
||
await self.add_message(thread_id, assistant_message)
|
||
|
||
# Execute tools if present
|
||
if 'tool_calls' in assistant_message and assistant_message['tool_calls']:
|
||
available_functions = self.get_available_functions()
|
||
if execute_tools_async:
|
||
tool_results = await self.execute_tools_async(assistant_message['tool_calls'], available_functions, thread_id)
|
||
else:
|
||
tool_results = await self.execute_tools_sync(assistant_message['tool_calls'], available_functions, thread_id)
|
||
|
||
for result in tool_results:
|
||
await self.add_message(thread_id, result)
|
||
logging.info(f"Tool execution result: {result}")
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error in handle_response_with_tools: {e}")
|
||
logging.error(f"Response: {response}")
|
||
response_content = response.choices[0].message.get('content', '')
|
||
await self.add_message(thread_id, {"role": "assistant", "content": response_content or ""})
|
||
|
||
def get_available_functions(self) -> Dict[str, Callable]:
|
||
available_functions = {}
|
||
for tool_name, tool_info in self.tool_registry.get_all_tools().items():
|
||
tool_instance = tool_info['instance']
|
||
for func_name, func in tool_instance.__class__.__dict__.items():
|
||
if callable(func) and not func_name.startswith("__"):
|
||
available_functions[func_name] = getattr(tool_instance, func_name)
|
||
return available_functions
|
||
|
||
async def execute_tools_async(self, tool_calls: List[Dict[str, Any]], available_functions: Dict[str, Callable], thread_id: str) -> List[Dict[str, Any]]:
|
||
"""
|
||
Execute multiple tool calls concurrently.
|
||
|
||
Args:
|
||
tool_calls (List[Dict[str, Any]]): List of tool calls to execute
|
||
available_functions (Dict[str, Callable]): Map of function names to implementations
|
||
thread_id (str): ID of the thread requesting tool execution
|
||
|
||
Returns:
|
||
List[Dict[str, Any]]: Results from tool executions
|
||
"""
|
||
async def execute_single_tool(tool_call: Dict[str, Any]) -> Dict[str, Any]:
|
||
try:
|
||
function_name = tool_call['function']['name']
|
||
function_args = tool_call['function']['arguments']
|
||
if isinstance(function_args, str):
|
||
function_args = json.loads(function_args)
|
||
|
||
function_to_call = available_functions.get(function_name)
|
||
if not function_to_call:
|
||
error_msg = f"Function {function_name} not found"
|
||
logging.error(error_msg)
|
||
return {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": function_name,
|
||
"content": str(ToolResult(success=False, output=error_msg))
|
||
}
|
||
|
||
result = await function_to_call(**function_args)
|
||
logging.info(f"Tool execution result for {function_name}: {result}")
|
||
|
||
return {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": function_name,
|
||
"content": str(result)
|
||
}
|
||
except Exception as e:
|
||
error_msg = f"Error executing {function_name}: {str(e)}"
|
||
logging.error(error_msg)
|
||
return {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": function_name,
|
||
"content": str(ToolResult(success=False, output=error_msg))
|
||
}
|
||
|
||
tasks = [execute_single_tool(tool_call) for tool_call in tool_calls]
|
||
results = await asyncio.gather(*tasks)
|
||
return results
|
||
|
||
async def execute_tools_sync(self, tool_calls: List[Dict[str, Any]], available_functions: Dict[str, Callable], thread_id: str) -> List[Dict[str, Any]]:
|
||
"""
|
||
Execute multiple tool calls sequentially.
|
||
|
||
Args:
|
||
tool_calls (List[Dict[str, Any]]): List of tool calls to execute
|
||
available_functions (Dict[str, Callable]): Map of function names to implementations
|
||
thread_id (str): ID of the thread requesting tool execution
|
||
|
||
Returns:
|
||
List[Dict[str, Any]]: Results from tool executions
|
||
"""
|
||
results = []
|
||
for tool_call in tool_calls:
|
||
try:
|
||
function_name = tool_call['function']['name']
|
||
function_args = tool_call['function']['arguments']
|
||
if isinstance(function_args, str):
|
||
function_args = json.loads(function_args)
|
||
|
||
function_to_call = available_functions.get(function_name)
|
||
if not function_to_call:
|
||
error_msg = f"Function {function_name} not found"
|
||
logging.error(error_msg)
|
||
result = ToolResult(success=False, output=error_msg)
|
||
else:
|
||
result = await function_to_call(**function_args)
|
||
logging.info(f"Tool execution result for {function_name}: {result}")
|
||
|
||
results.append({
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": function_name,
|
||
"content": str(result)
|
||
})
|
||
except Exception as e:
|
||
error_msg = f"Error executing {function_name}: {str(e)}"
|
||
logging.error(error_msg)
|
||
results.append({
|
||
"role": "tool",
|
||
"tool_call_id": tool_call['id'],
|
||
"name": function_name,
|
||
"content": str(ToolResult(success=False, output=error_msg))
|
||
})
|
||
|
||
return results
|
||
|
||
async def execute_tool(self, function_to_call, function_args, function_name, tool_call_id):
|
||
try:
|
||
function_response = await function_to_call(**function_args)
|
||
except Exception as e:
|
||
error_message = f"Error in {function_name}: {str(e)}"
|
||
function_response = ToolResult(success=False, output=error_message)
|
||
|
||
return {
|
||
"role": "tool",
|
||
"tool_call_id": tool_call_id,
|
||
"name": function_name,
|
||
"content": str(function_response),
|
||
}
|
||
|
||
async def get_thread(self, thread_id: str) -> Optional[Dict[str, Any]]:
|
||
thread_path = os.path.join(self.threads_dir, f"{thread_id}.json")
|
||
try:
|
||
with open(thread_path, 'r') as f:
|
||
return json.load(f)
|
||
except FileNotFoundError:
|
||
return None
|
||
|
||
if __name__ == "__main__":
|
||
import asyncio
|
||
from agentpress.examples.example_agent.tools.files_tool import FilesTool
|
||
|
||
async def main():
|
||
manager = ThreadManager()
|
||
manager.add_tool(FilesTool, ['create_file'])
|
||
thread_id = await manager.create_thread()
|
||
|
||
# Add a test message
|
||
await manager.add_message(thread_id, {
|
||
"role": "user",
|
||
"content": "Please create 10x files – Each should be a chapter of a book about an Introduction to Robotics.."
|
||
})
|
||
|
||
system_message = {
|
||
"role": "system",
|
||
"content": "You are a helpful assistant that can create, read, update, and delete files."
|
||
}
|
||
model_name = "anthropic/claude-3-5-haiku-latest"
|
||
# model_name = "gpt-4o-mini"
|
||
|
||
# Test with tools (non-streaming)
|
||
print("\n🤖 Testing non-streaming response with tools:")
|
||
response = await manager.run_thread(
|
||
thread_id=thread_id,
|
||
system_message=system_message,
|
||
model_name=model_name,
|
||
temperature=0.7,
|
||
stream=False,
|
||
use_tools=True,
|
||
execute_tool_calls=True
|
||
)
|
||
|
||
# Print the non-streaming response
|
||
if "error" in response:
|
||
print(f"Error: {response['message']}")
|
||
else:
|
||
print(response["llm_response"].choices[0].message.content)
|
||
print("\n✨ Response completed.\n")
|
||
|
||
# Test streaming
|
||
print("\n🤖 Testing streaming response:")
|
||
stream_response = await manager.run_thread(
|
||
thread_id=thread_id,
|
||
system_message=system_message,
|
||
model_name=model_name,
|
||
temperature=0.7,
|
||
stream=True,
|
||
use_tools=True,
|
||
execute_tool_calls=True,
|
||
execute_tools_on_stream=True
|
||
)
|
||
|
||
buffer = ""
|
||
async for chunk in stream_response:
|
||
if isinstance(chunk, dict) and 'choices' in chunk:
|
||
content = chunk['choices'][0]['delta'].get('content', '')
|
||
else:
|
||
# For non-dict responses (like ModelResponse objects)
|
||
content = chunk.choices[0].delta.content
|
||
|
||
if content:
|
||
buffer += content
|
||
# Print complete words/sentences when we hit whitespace
|
||
if content[-1].isspace():
|
||
print(buffer, end='', flush=True)
|
||
buffer = ""
|
||
|
||
# Print any remaining content
|
||
if buffer:
|
||
print(buffer, flush=True)
|
||
print("\n✨ Stream completed.\n")
|
||
|
||
asyncio.run(main())
|