mirror of https://github.com/kortix-ai/suna.git
319 lines
12 KiB
Python
319 lines
12 KiB
Python
from tavily import AsyncTavilyClient
|
|
import httpx
|
|
from typing import List, Optional
|
|
from datetime import datetime
|
|
import os
|
|
from dotenv import load_dotenv
|
|
from agentpress.tool import Tool, ToolResult, openapi_schema, xml_schema
|
|
import json
|
|
|
|
# TODO: add subpages, etc... in filters as sometimes its necessary
|
|
|
|
class WebSearchTool(Tool):
|
|
"""Tool for performing web searches using the Exa API."""
|
|
|
|
def __init__(self, api_key: str = None):
|
|
super().__init__()
|
|
# Load environment variables
|
|
load_dotenv()
|
|
# Use the provided API key or get it from environment variables
|
|
self.api_key = api_key or os.getenv("TAVILY_API_KEY")
|
|
if not self.api_key:
|
|
raise ValueError("TAVILY_API_KEY not found in environment variables")
|
|
|
|
# Tavily asynchronous search client
|
|
self.tavily_client = AsyncTavilyClient(api_key=self.api_key)
|
|
|
|
@openapi_schema({
|
|
"type": "function",
|
|
"function": {
|
|
"name": "web_search",
|
|
"description": "Search the web for up-to-date information on a specific topic using the Exa API. This tool allows you to gather real-time information from the internet to answer user queries, research topics, validate facts, and find recent developments. Results include titles, URLs, summaries, and publication dates. Use this tool for discovering relevant web pages before potentially crawling them for complete content.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {
|
|
"type": "string",
|
|
"description": "The search query to find relevant web pages. Be specific and include key terms to improve search accuracy. For best results, use natural language questions or keyword combinations that precisely describe what you're looking for."
|
|
},
|
|
"summary": {
|
|
"type": "boolean",
|
|
"description": "Whether to include a summary of each search result. Summaries provide key context about each page without requiring full content extraction. Set to true to get concise descriptions of each result.",
|
|
"default": True
|
|
},
|
|
"num_results": {
|
|
"type": "integer",
|
|
"description": "The number of search results to return. Increase for more comprehensive research or decrease for focused, high-relevance results.",
|
|
"default": 20
|
|
}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
}
|
|
})
|
|
@xml_schema(
|
|
tag_name="web-search",
|
|
mappings=[
|
|
{"param_name": "query", "node_type": "attribute", "path": "."},
|
|
{"param_name": "summary", "node_type": "attribute", "path": "."},
|
|
{"param_name": "num_results", "node_type": "attribute", "path": "."}
|
|
],
|
|
example='''
|
|
<!--
|
|
The web-search tool allows you to search the internet for real-time information.
|
|
Use this tool when you need to find current information, research topics, or verify facts.
|
|
|
|
The tool returns information including:
|
|
- Titles of relevant web pages
|
|
- URLs for accessing the pages
|
|
- Summaries of page content (if summary=true)
|
|
- Published dates (when available)
|
|
-->
|
|
|
|
<!-- Simple search example -->
|
|
<web-search
|
|
query="current weather in New York City"
|
|
summary="true"
|
|
num_results="20">
|
|
</web-search>
|
|
|
|
<!-- Another search example -->
|
|
<web-search
|
|
query="healthy breakfast recipes"
|
|
summary="true"
|
|
num_results="20">
|
|
</web-search>
|
|
'''
|
|
)
|
|
async def web_search(
|
|
self,
|
|
query: str,
|
|
summary: bool = True,
|
|
num_results: int = 20
|
|
) -> ToolResult:
|
|
"""
|
|
Search the web using the Exa API to find relevant and up-to-date information.
|
|
"""
|
|
try:
|
|
# Ensure we have a valid query
|
|
if not query or not isinstance(query, str):
|
|
return self.fail_response("A valid search query is required.")
|
|
|
|
# Normalize num_results
|
|
if num_results is None:
|
|
num_results = 20
|
|
elif isinstance(num_results, int):
|
|
num_results = max(1, min(num_results, 50))
|
|
elif isinstance(num_results, str):
|
|
try:
|
|
num_results = max(1, min(int(num_results), 50))
|
|
except ValueError:
|
|
num_results = 20
|
|
else:
|
|
num_results = 20
|
|
|
|
# Execute the search with Tavily
|
|
search_response = await self.tavily_client.search(
|
|
query=query,
|
|
max_results=num_results,
|
|
include_answer=False,
|
|
include_images=False,
|
|
)
|
|
|
|
# Normalize the response format
|
|
raw_results = (
|
|
search_response.get("results")
|
|
if isinstance(search_response, dict)
|
|
else search_response
|
|
)
|
|
|
|
# Format results consistently
|
|
formatted_results = []
|
|
for result in raw_results:
|
|
formatted_result = {
|
|
"title": result.get("title", ""),
|
|
"url": result.get("url", ""),
|
|
}
|
|
|
|
if summary:
|
|
# Prefer full content; fall back to description
|
|
formatted_result["snippet"] = (
|
|
result.get("content") or
|
|
result.get("description") or
|
|
""
|
|
)
|
|
|
|
formatted_results.append(formatted_result)
|
|
|
|
# Return a properly formatted ToolResult
|
|
return ToolResult(
|
|
success=True,
|
|
output=json.dumps(formatted_results, ensure_ascii=False)
|
|
)
|
|
|
|
except Exception as e:
|
|
error_message = str(e)
|
|
simplified_message = f"Error performing web search: {error_message[:200]}"
|
|
if len(error_message) > 200:
|
|
simplified_message += "..."
|
|
return self.fail_response(simplified_message)
|
|
|
|
@openapi_schema({
|
|
"type": "function",
|
|
"function": {
|
|
"name": "crawl_webpage",
|
|
"description": "Retrieve the complete text content of a specific webpage. This tool extracts the full text content from any accessible web page and returns it for analysis, processing, or reference. The extracted text includes the main content of the page without HTML markup. Note that some pages may have limitations on access due to paywalls, access restrictions, or dynamic content loading.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"url": {
|
|
"type": "string",
|
|
"description": "The complete URL of the webpage to crawl. This should be a valid, accessible web address including the protocol (http:// or https://). The tool will attempt to extract all text content from this URL."
|
|
}
|
|
},
|
|
"required": ["url"]
|
|
}
|
|
}
|
|
})
|
|
@xml_schema(
|
|
tag_name="crawl-webpage",
|
|
mappings=[
|
|
{"param_name": "url", "node_type": "attribute", "path": "."}
|
|
],
|
|
example='''
|
|
<!--
|
|
The crawl-webpage tool extracts the complete text content from web pages.
|
|
Use this tool when you need detailed information from specific web pages.
|
|
-->
|
|
|
|
<!-- Basic webpage crawl example -->
|
|
<crawl-webpage
|
|
url="https://example.com/article/technology-trends">
|
|
</crawl-webpage>
|
|
'''
|
|
)
|
|
async def crawl_webpage(
|
|
self,
|
|
url: str
|
|
) -> ToolResult:
|
|
"""
|
|
Retrieve the complete text content of a webpage using the Exa API.
|
|
|
|
This function crawls the specified URL and extracts the full text content from the page.
|
|
The extracted text is returned in the response, making it available for further analysis,
|
|
processing, or reference.
|
|
|
|
The returned data includes:
|
|
- Title: The title of the webpage
|
|
- URL: The URL of the crawled page
|
|
- Published Date: When the content was published (if available)
|
|
- Text: The complete text content of the webpage
|
|
|
|
Note that some pages may have limitations on access due to paywalls,
|
|
access restrictions, or dynamic content loading.
|
|
|
|
Parameters:
|
|
- url: The URL of the webpage to crawl
|
|
"""
|
|
try:
|
|
# Parse the URL parameter exactly as it would appear in XML
|
|
if not url:
|
|
return self.fail_response("A valid URL is required.")
|
|
|
|
# Handle url parameter (as it would appear in XML)
|
|
if isinstance(url, str):
|
|
# Add protocol if missing
|
|
if not (url.startswith('http://') or url.startswith('https://')):
|
|
url = 'https://' + url
|
|
else:
|
|
return self.fail_response("URL must be a string.")
|
|
|
|
# ---------- Tavily extract endpoint ----------
|
|
async with httpx.AsyncClient() as client:
|
|
headers = {
|
|
"Authorization": f"Bearer {self.api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
payload = {
|
|
"urls": url,
|
|
"include_images": False,
|
|
"extract_depth": "basic",
|
|
}
|
|
response = await client.post(
|
|
"https://api.tavily.com/extract",
|
|
json=payload,
|
|
headers=headers,
|
|
timeout=60,
|
|
)
|
|
response.raise_for_status()
|
|
data = response.json()
|
|
|
|
# Normalize Tavily extract output to a list of dicts
|
|
extracted = []
|
|
if isinstance(data, list):
|
|
extracted = data
|
|
elif isinstance(data, dict):
|
|
if "results" in data and isinstance(data["results"], list):
|
|
extracted = data["results"]
|
|
elif "urls" in data and isinstance(data["urls"], dict):
|
|
extracted = list(data["urls"].values())
|
|
else:
|
|
extracted = [data]
|
|
|
|
# Format results consistently
|
|
formatted_results = []
|
|
for item in extracted:
|
|
formatted_result = {
|
|
"title": item.get("title", ""),
|
|
"url": item.get("url", url),
|
|
"content": item.get("raw_content") or item.get("content") or item.get("text", "")
|
|
}
|
|
|
|
if item.get("published_date"):
|
|
formatted_result["published_date"] = item["published_date"]
|
|
|
|
formatted_results.append(formatted_result)
|
|
|
|
# Return a properly formatted ToolResult
|
|
return ToolResult(
|
|
success=True,
|
|
output=json.dumps(formatted_results, ensure_ascii=False)
|
|
)
|
|
|
|
except Exception as e:
|
|
error_message = str(e)
|
|
# Truncate very long error messages
|
|
simplified_message = f"Error crawling webpage: {error_message[:200]}"
|
|
if len(error_message) > 200:
|
|
simplified_message += "..."
|
|
return self.fail_response(simplified_message)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
async def test_web_search():
|
|
"""Test function for the web search tool"""
|
|
search_tool = WebSearchTool()
|
|
result = await search_tool.web_search(
|
|
query="rubber gym mats best prices comparison",
|
|
summary=True,
|
|
num_results=20
|
|
)
|
|
print(result)
|
|
|
|
async def test_crawl_webpage():
|
|
"""Test function for the webpage crawl tool"""
|
|
search_tool = WebSearchTool()
|
|
result = await search_tool.crawl_webpage(
|
|
# url="https://google.com",
|
|
url = "https://www.wired.com/story/anthropic-benevolent-artificial-intelligence/",
|
|
)
|
|
print(result)
|
|
|
|
async def run_tests():
|
|
"""Run all test functions"""
|
|
await test_web_search()
|
|
await test_crawl_webpage()
|
|
|
|
asyncio.run(run_tests()) |