mirror of https://github.com/kortix-ai/suna.git
175 lines
7.7 KiB
Python
175 lines
7.7 KiB
Python
import logging
|
|
from typing import Dict, Any, AsyncGenerator, Callable
|
|
from agentpress.tool_parser import ToolParser
|
|
from agentpress.tool_executor import ToolExecutor
|
|
import asyncio
|
|
|
|
class LLMResponseProcessor:
|
|
"""
|
|
Handles LLM response processing and tool execution management.
|
|
|
|
This class manages both streaming and non-streaming responses from Language Models,
|
|
coordinating tool execution timing and order. It maintains message state and handles
|
|
the execution of tool calls either immediately or after collecting a complete response,
|
|
with support for both parallel and sequential execution patterns.
|
|
|
|
Attributes:
|
|
thread_id (str): Identifier for the conversation thread
|
|
tool_executor (ToolExecutor): Executor for handling tool calls
|
|
tool_parser (ToolParser): Parser for processing LLM responses
|
|
available_functions (Dict): Registry of available tool functions
|
|
add_message (Callable): Callback to add messages to the thread
|
|
update_message (Callable): Callback to update existing messages
|
|
parallel_tool_execution (bool): Whether to execute tools in parallel or sequentially
|
|
tool_calls_buffer (Dict): Buffer for storing incomplete tool calls during streaming
|
|
processed_tool_calls (set): Set of already processed tool call IDs
|
|
current_message (Dict): Current message being processed in streaming mode
|
|
content_buffer (str): Buffer for accumulating content during streaming
|
|
tool_calls_accumulated (list): List of tool calls accumulated during streaming
|
|
message_added (bool): Flag to indicate if a message has been added to the thread
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
thread_id: str,
|
|
tool_executor: ToolExecutor,
|
|
tool_parser: ToolParser,
|
|
available_functions: Dict,
|
|
add_message_callback: Callable,
|
|
update_message_callback: Callable
|
|
):
|
|
self.thread_id = thread_id
|
|
self.tool_executor = tool_executor
|
|
self.tool_parser = tool_parser
|
|
self.available_functions = available_functions
|
|
self.add_message = add_message_callback
|
|
self.update_message = update_message_callback
|
|
|
|
# State tracking for streaming responses
|
|
self.tool_calls_buffer = {}
|
|
self.processed_tool_calls = set()
|
|
self.content_buffer = ""
|
|
self.tool_calls_accumulated = []
|
|
self.message_added = False
|
|
|
|
async def process_stream(
|
|
self,
|
|
response_stream: AsyncGenerator,
|
|
execute_tools: bool = True,
|
|
immediate_execution: bool = True
|
|
) -> AsyncGenerator:
|
|
"""
|
|
Process streaming LLM response and handle tool execution.
|
|
|
|
Yields chunks immediately as they arrive, while handling tool execution
|
|
and message management in the background.
|
|
"""
|
|
pending_tool_calls = []
|
|
|
|
async def handle_message_management(chunk):
|
|
# Accumulate content
|
|
if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content:
|
|
self.content_buffer += chunk.choices[0].delta.content
|
|
|
|
# Parse and accumulate tool calls
|
|
parsed_message, is_complete = await self.tool_parser.parse_stream(
|
|
chunk,
|
|
self.tool_calls_buffer
|
|
)
|
|
if parsed_message and 'tool_calls' in parsed_message:
|
|
self.tool_calls_accumulated = parsed_message['tool_calls']
|
|
|
|
# Handle message management and tool execution
|
|
if chunk.choices[0].finish_reason or (self.content_buffer and self.tool_calls_accumulated):
|
|
message = {
|
|
"role": "assistant",
|
|
"content": self.content_buffer
|
|
}
|
|
if self.tool_calls_accumulated:
|
|
message["tool_calls"] = self.tool_calls_accumulated
|
|
|
|
if not self.message_added:
|
|
await self.add_message(self.thread_id, message)
|
|
self.message_added = True
|
|
else:
|
|
await self.update_message(self.thread_id, message)
|
|
|
|
# Handle tool execution
|
|
if execute_tools and self.tool_calls_accumulated:
|
|
new_tool_calls = [
|
|
tool_call for tool_call in self.tool_calls_accumulated
|
|
if tool_call['id'] not in self.processed_tool_calls
|
|
]
|
|
|
|
if new_tool_calls:
|
|
if immediate_execution:
|
|
results = await self.tool_executor.execute_tool_calls(
|
|
tool_calls=new_tool_calls,
|
|
available_functions=self.available_functions,
|
|
thread_id=self.thread_id,
|
|
executed_tool_calls=self.processed_tool_calls
|
|
)
|
|
for result in results:
|
|
await self.add_message(self.thread_id, result)
|
|
self.processed_tool_calls.add(result['tool_call_id'])
|
|
else:
|
|
pending_tool_calls.extend(new_tool_calls)
|
|
|
|
# Handle end of stream
|
|
if chunk.choices[0].finish_reason:
|
|
if not immediate_execution and pending_tool_calls:
|
|
results = await self.tool_executor.execute_tool_calls(
|
|
tool_calls=pending_tool_calls,
|
|
available_functions=self.available_functions,
|
|
thread_id=self.thread_id,
|
|
executed_tool_calls=self.processed_tool_calls
|
|
)
|
|
for result in results:
|
|
await self.add_message(self.thread_id, result)
|
|
self.processed_tool_calls.add(result['tool_call_id'])
|
|
pending_tool_calls.clear()
|
|
|
|
async for chunk in response_stream:
|
|
# Start background task for message management and tool execution
|
|
asyncio.create_task(handle_message_management(chunk))
|
|
# Immediately yield the chunk
|
|
yield chunk
|
|
|
|
async def process_response(
|
|
self,
|
|
response: Any,
|
|
execute_tools: bool = True
|
|
) -> None:
|
|
"""
|
|
Process complete LLM response and execute tools.
|
|
|
|
Handles non-streaming responses, parsing the complete response and
|
|
executing any tool calls according to the configured execution strategy.
|
|
|
|
Args:
|
|
response: Complete response from the LLM
|
|
execute_tools: Whether to execute identified tool calls
|
|
"""
|
|
try:
|
|
assistant_message = await self.tool_parser.parse_response(response)
|
|
await self.add_message(self.thread_id, assistant_message)
|
|
|
|
if execute_tools and 'tool_calls' in assistant_message and assistant_message['tool_calls']:
|
|
results = await self.tool_executor.execute_tool_calls(
|
|
tool_calls=assistant_message['tool_calls'],
|
|
available_functions=self.available_functions,
|
|
thread_id=self.thread_id,
|
|
executed_tool_calls=self.processed_tool_calls
|
|
)
|
|
|
|
for result in results:
|
|
await self.add_message(self.thread_id, result)
|
|
logging.info(f"Tool execution result: {result}")
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error processing response: {e}")
|
|
response_content = response.choices[0].message.get('content', '')
|
|
await self.add_message(self.thread_id, {
|
|
"role": "assistant",
|
|
"content": response_content or ""
|
|
}) |