Suna - Open Source Generalist AI Agent
Go to file
Adam Cohen Hillel fd83939cf6 ok 2025-04-15 23:13:32 +01:00
backend first edition 2025-04-15 22:42:56 +01:00
docs/images first edition 2025-04-15 22:42:56 +01:00
frontend first edition 2025-04-15 22:42:56 +01:00
.gitignore landing, frontend wip 2025-04-15 18:20:27 +01:00
LICENSE first edition 2025-04-15 22:42:56 +01:00
README.md ok 2025-04-15 23:13:32 +01:00

README.md

Suna - Open Source Generalist AI Agent

(that acts on your behalf)

Suna Screenshot

Suna is a fully open source AI assistant that helps you accomplish real-world tasks with ease. Through natural conversation, Suna becomes your digital companion for research, data analysis, and everyday challenges—combining powerful capabilities with an intuitive interface that understands what you need and delivers results.

Suna's powerful toolkit includes seamless browser automation to navigate the web and extract data, file management for document creation and editing, web crawling and extended search capabilities, command-line execution for system tasks, website deployment, and integration with various APIs and services. These capabilities work together harmoniously, allowing Suna to solve your complex problems and automate workflows through simple conversations!

License Discord Follow Twitter Follow GitHub Repo stars Issues

Table of Contents

Project Architecture

Architecture Diagram

Suna consists of four main components:

Backend API

Python/FastAPI service that handles REST endpoints, thread management, and LLM integration with OpenAI, Anthropic, and others via LiteLLM.

Frontend

Next.js/React application providing a responsive UI with chat interface, dashboard, etc.

Agent Docker

Isolated execution environment for every agent - with browser automation, code interpreter, file system access, tool integration, and security features.

Supabase Database

Handles data persistence with authentication, user management, conversation history, file storage, agent state, analytics, and real-time subscriptions.

Run Locally / Self-Hosting

Suna can be self-hosted on your own infrastructure. Follow these steps to set up your own instance.

Requirements

You'll need the following components:

  • A Supabase project for database and authentication
  • Redis database for caching and session management
  • Daytona sandbox for secure agent execution
  • Python 3.11 for the API backend
  • API keys for LLM providers (OpenAI or Anthropic)
  • (Optional but recommended) EXA API key for enhanced search capabilities

Prerequisites

  1. Supabase:

  2. Redis: Set up a Redis instance using one of these options:

    • Upstash Redis (recommended for cloud deployments)
    • Local installation:
      • Mac: brew install redis
      • Linux: Follow distribution-specific instructions
      • Windows: Use WSL2 or Docker
    • Save your Redis connection details for later use
  3. Daytona:

    • Create an account on Daytona
    • Generate an API key from your account settings
    • Go to Images
    • Click "Add Image"
    • Enter adamcohenhillel/kortix-suna:0.0.13 as the image name
    • Set exec /usr/bin/supervisord -n -c /etc/supervisor/conf.d/supervisord.conf as the Entrypoint
  4. LLM API Keys:

    • Obtain an API key from OpenAI or Anthropic
    • While other providers should work via LiteLLM, OpenAI and Anthropic are recommended
  5. Search API Key (Optional):

    • For enhanced search capabilities, obtain an Exa API key

Installation Steps

  1. Clone the repository:
git clone https://github.com/kortix-ai/agentpress.git
cd agentpress
  1. Configure backend environment:
cd backend
cp .env.example .env  # Create from example if available, or use the following template

Edit the .env file and fill in your credentials:

NEXT_PUBLIC_URL="http://localhost:3000"

# Supabase credentials from step 1
SUPABASE_URL=your_supabase_url
SUPABASE_ANON_KEY=your_supabase_anon_key
SUPABASE_SERVICE_ROLE_KEY=your_supabase_service_role_key

# Redis credentials from step 2
REDIS_HOST=your_redis_host
REDIS_PORT=6379
REDIS_PASSWORD=your_redis_password
REDIS_SSL=True  # Set to False for local Redis without SSL

# Daytona credentials from step 3
DAYTONA_API_KEY=your_daytona_api_key
DAYTONA_SERVER_URL="https://app.daytona.io/api"
DAYTONA_TARGET="us"

# Anthropic or OpenAI: 
# Anthropic
ANTHROPIC_API_KEY=
MODEL_TO_USE="anthropic/claude-3-7-sonnet-latest"

# OR OpenAI API:
OPENAI_API_KEY=your_openai_api_key
MODEL_TO_USE="gpt-4o"

# Optional but recommended
EXA_API_KEY=your_exa_api_key  # Optional
  1. Set up Supabase database:
# Login to Supabase CLI
supabase login

# Link to your project (find your project reference in the Supabase dashboard)
supabase link --project-ref your_project_reference_id

# Push database migrations
supabase db push
  1. Configure frontend environment:
cd ../frontend
cp .env.example .env.local  # Create from example if available, or use the following template

Edit the .env.local file:

NEXT_PUBLIC_SUPABASE_URL=your_supabase_url
NEXT_PUBLIC_SUPABASE_ANON_KEY=your_supabase_anon_key
NEXT_PUBLIC_BACKEND_URL="http://localhost:8000/api"
NEXT_PUBLIC_URL="http://localhost:3000"
  1. Install dependencies:
# Install frontend dependencies
cd frontend
npm install

# Install backend dependencies
cd ../backend
pip install -r requirements.txt
  1. Start the application:

    In one terminal, start the frontend:

cd frontend
npm run dev

In another terminal, start the backend:

cd backend
python api.py
  1. Access Suna:
    • Open your browser and navigate to http://localhost:3000
    • Sign up for an account using the Supabase authentication
    • Start using your self-hosted Suna instance!

License

Kortix Suna is licensed under the Apache License, Version 2.0. See LICENSE for the full license text.