mirror of https://github.com/kortix-ai/suna.git
455 lines
20 KiB
Python
455 lines
20 KiB
Python
import os
|
||
import json
|
||
import re
|
||
from uuid import uuid4
|
||
from typing import Optional
|
||
|
||
# from agent.tools.message_tool import MessageTool
|
||
from agent.tools.message_tool import MessageTool
|
||
from agent.tools.sb_deploy_tool import SandboxDeployTool
|
||
from agent.tools.sb_expose_tool import SandboxExposeTool
|
||
from agent.tools.web_search_tool import WebSearchTool
|
||
from dotenv import load_dotenv
|
||
|
||
from agentpress.thread_manager import ThreadManager
|
||
from agentpress.response_processor import ProcessorConfig
|
||
from agent.tools.sb_shell_tool import SandboxShellTool
|
||
from agent.tools.sb_files_tool import SandboxFilesTool
|
||
from agent.tools.sb_browser_tool import SandboxBrowserTool
|
||
from agent.tools.data_providers_tool import DataProvidersTool
|
||
from agent.prompt import get_system_prompt
|
||
from sandbox.sandbox import create_sandbox, get_or_start_sandbox
|
||
from utils.billing import check_billing_status, get_account_id_from_thread
|
||
|
||
load_dotenv()
|
||
|
||
async def run_agent(
|
||
thread_id: str,
|
||
project_id: str,
|
||
sandbox,
|
||
stream: bool,
|
||
thread_manager: Optional[ThreadManager] = None,
|
||
native_max_auto_continues: int = 25,
|
||
max_iterations: int = 150,
|
||
model_name: str = "anthropic/claude-3-7-sonnet-latest",
|
||
enable_thinking: Optional[bool] = False,
|
||
reasoning_effort: Optional[str] = 'low',
|
||
enable_context_manager: bool = True
|
||
):
|
||
"""Run the development agent with specified configuration."""
|
||
|
||
if not thread_manager:
|
||
thread_manager = ThreadManager()
|
||
client = await thread_manager.db.client
|
||
|
||
# Get account ID from thread for billing checks
|
||
account_id = await get_account_id_from_thread(client, thread_id)
|
||
if not account_id:
|
||
raise ValueError("Could not determine account ID for thread")
|
||
|
||
# Note: Billing checks are now done in api.py before this function is called
|
||
|
||
thread_manager.add_tool(SandboxShellTool, sandbox=sandbox)
|
||
thread_manager.add_tool(SandboxFilesTool, sandbox=sandbox)
|
||
thread_manager.add_tool(SandboxBrowserTool, sandbox=sandbox, thread_id=thread_id, thread_manager=thread_manager)
|
||
thread_manager.add_tool(SandboxDeployTool, sandbox=sandbox)
|
||
thread_manager.add_tool(SandboxExposeTool, sandbox=sandbox)
|
||
thread_manager.add_tool(MessageTool) # we are just doing this via prompt as there is no need to call it as a tool
|
||
|
||
if os.getenv("TAVILY_API_KEY"):
|
||
thread_manager.add_tool(WebSearchTool)
|
||
else:
|
||
print("TAVILY_API_KEY not found, WebSearchTool will not be available.")
|
||
|
||
if os.getenv("RAPID_API_KEY"):
|
||
thread_manager.add_tool(DataProvidersTool)
|
||
|
||
system_message = { "role": "system", "content": get_system_prompt() }
|
||
|
||
iteration_count = 0
|
||
continue_execution = True
|
||
|
||
while continue_execution and iteration_count < max_iterations:
|
||
iteration_count += 1
|
||
print(f"Running iteration {iteration_count}...")
|
||
|
||
# Billing check on each iteration - still needed within the iterations
|
||
can_run, message, subscription = await check_billing_status(client, account_id)
|
||
if not can_run:
|
||
error_msg = f"Billing limit reached: {message}"
|
||
# Yield a special message to indicate billing limit reached
|
||
yield {
|
||
"type": "status",
|
||
"status": "stopped",
|
||
"message": error_msg
|
||
}
|
||
break
|
||
# Check if last message is from assistant using direct Supabase query
|
||
latest_message = await client.table('messages').select('*').eq('thread_id', thread_id).in_('type', ['assistant', 'tool', 'user']).order('created_at', desc=True).limit(1).execute()
|
||
if latest_message.data and len(latest_message.data) > 0:
|
||
message_type = latest_message.data[0].get('type')
|
||
if message_type == 'assistant':
|
||
print(f"Last message was from assistant, stopping execution")
|
||
continue_execution = False
|
||
break
|
||
|
||
# Get the latest message from messages table that its type is browser_state
|
||
latest_browser_state = await client.table('messages').select('*').eq('thread_id', thread_id).eq('type', 'browser_state').order('created_at', desc=True).limit(1).execute()
|
||
temporary_message = None
|
||
if latest_browser_state.data and len(latest_browser_state.data) > 0:
|
||
try:
|
||
content = json.loads(latest_browser_state.data[0]["content"])
|
||
screenshot_base64 = content["screenshot_base64"]
|
||
# Create a copy of the browser state without screenshot
|
||
browser_state = content.copy()
|
||
browser_state.pop('screenshot_base64', None)
|
||
browser_state.pop('screenshot_url', None)
|
||
browser_state.pop('screenshot_url_base64', None)
|
||
temporary_message = { "role": "user", "content": [] }
|
||
if browser_state:
|
||
temporary_message["content"].append({
|
||
"type": "text",
|
||
"text": f"The following is the current state of the browser:\n{browser_state}"
|
||
})
|
||
if screenshot_base64:
|
||
temporary_message["content"].append({
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": f"data:image/jpeg;base64,{screenshot_base64}",
|
||
}
|
||
})
|
||
else:
|
||
print("@@@@@ THIS TIME NO SCREENSHOT!!")
|
||
except Exception as e:
|
||
print(f"Error parsing browser state: {e}")
|
||
# print(latest_browser_state.data[0])
|
||
|
||
max_tokens = 64000 if "sonnet" in model_name.lower() else None
|
||
|
||
response = await thread_manager.run_thread(
|
||
thread_id=thread_id,
|
||
system_prompt=system_message,
|
||
stream=stream,
|
||
llm_model=model_name,
|
||
llm_temperature=0,
|
||
llm_max_tokens=max_tokens,
|
||
tool_choice="auto",
|
||
max_xml_tool_calls=1,
|
||
temporary_message=temporary_message,
|
||
processor_config=ProcessorConfig(
|
||
xml_tool_calling=True,
|
||
native_tool_calling=False,
|
||
execute_tools=True,
|
||
execute_on_stream=True,
|
||
tool_execution_strategy="parallel",
|
||
xml_adding_strategy="user_message"
|
||
),
|
||
native_max_auto_continues=native_max_auto_continues,
|
||
include_xml_examples=True,
|
||
enable_thinking=enable_thinking,
|
||
reasoning_effort=reasoning_effort,
|
||
enable_context_manager=enable_context_manager
|
||
)
|
||
|
||
if isinstance(response, dict) and "status" in response and response["status"] == "error":
|
||
yield response
|
||
break
|
||
|
||
# Track if we see ask or complete tool calls
|
||
last_tool_call = None
|
||
|
||
async for chunk in response:
|
||
# print(f"CHUNK: {chunk}") # Uncomment for detailed chunk logging
|
||
|
||
# Check for XML versions like <ask> or <complete> in assistant content chunks
|
||
if chunk.get('type') == 'assistant' and 'content' in chunk:
|
||
try:
|
||
# The content field might be a JSON string or object
|
||
content = chunk.get('content', '{}')
|
||
if isinstance(content, str):
|
||
assistant_content_json = json.loads(content)
|
||
else:
|
||
assistant_content_json = content
|
||
|
||
# The actual text content is nested within
|
||
assistant_text = assistant_content_json.get('content', '')
|
||
if isinstance(assistant_text, str): # Ensure it's a string
|
||
# Check for the closing tags as they signal the end of the tool usage
|
||
if '</ask>' in assistant_text or '</complete>' in assistant_text:
|
||
xml_tool = 'ask' if '</ask>' in assistant_text else 'complete'
|
||
last_tool_call = xml_tool
|
||
print(f"Agent used XML tool: {xml_tool}")
|
||
except json.JSONDecodeError:
|
||
# Handle cases where content might not be valid JSON
|
||
print(f"Warning: Could not parse assistant content JSON: {chunk.get('content')}")
|
||
except Exception as e:
|
||
print(f"Error processing assistant chunk: {e}")
|
||
|
||
yield chunk
|
||
|
||
# Check if we should stop based on the last tool call
|
||
if last_tool_call in ['ask', 'complete']:
|
||
print(f"Agent decided to stop with tool: {last_tool_call}")
|
||
continue_execution = False
|
||
|
||
|
||
|
||
# TESTING
|
||
|
||
async def test_agent():
|
||
"""Test function to run the agent with a sample query"""
|
||
from agentpress.thread_manager import ThreadManager
|
||
from services.supabase import DBConnection
|
||
|
||
# Initialize ThreadManager
|
||
thread_manager = ThreadManager()
|
||
|
||
# Create a test thread directly with Postgres function
|
||
client = await DBConnection().client
|
||
|
||
try:
|
||
# Get user's personal account
|
||
account_result = await client.rpc('get_personal_account').execute()
|
||
|
||
# if not account_result.data:
|
||
# print("Error: No personal account found")
|
||
# return
|
||
|
||
account_id = "a5fe9cb6-4812-407e-a61c-fe95b7320c59"
|
||
|
||
if not account_id:
|
||
print("Error: Could not get account ID")
|
||
return
|
||
|
||
# Find or create a test project in the user's account
|
||
project_result = await client.table('projects').select('*').eq('name', 'test11').eq('account_id', account_id).execute()
|
||
|
||
if project_result.data and len(project_result.data) > 0:
|
||
# Use existing test project
|
||
project_id = project_result.data[0]['project_id']
|
||
print(f"\n🔄 Using existing test project: {project_id}")
|
||
else:
|
||
# Create new test project if none exists
|
||
project_result = await client.table('projects').insert({
|
||
"name": "test11",
|
||
"account_id": account_id
|
||
}).execute()
|
||
project_id = project_result.data[0]['project_id']
|
||
print(f"\n✨ Created new test project: {project_id}")
|
||
|
||
# Create a thread for this project
|
||
thread_result = await client.table('threads').insert({
|
||
'project_id': project_id,
|
||
'account_id': account_id
|
||
}).execute()
|
||
thread_data = thread_result.data[0] if thread_result.data else None
|
||
|
||
if not thread_data:
|
||
print("Error: No thread data returned")
|
||
return
|
||
|
||
thread_id = thread_data['thread_id']
|
||
except Exception as e:
|
||
print(f"Error setting up thread: {str(e)}")
|
||
return
|
||
|
||
print(f"\n🤖 Agent Thread Created: {thread_id}\n")
|
||
|
||
# Interactive message input loop
|
||
while True:
|
||
# Get user input
|
||
user_message = input("\n💬 Enter your message (or 'exit' to quit): ")
|
||
if user_message.lower() == 'exit':
|
||
break
|
||
|
||
if not user_message.strip():
|
||
print("\n🔄 Running agent...\n")
|
||
await process_agent_response(thread_id, project_id, thread_manager)
|
||
continue
|
||
|
||
# Add the user message to the thread
|
||
await thread_manager.add_message(
|
||
thread_id=thread_id,
|
||
type="user",
|
||
content={
|
||
"role": "user",
|
||
"content": user_message
|
||
},
|
||
is_llm_message=True
|
||
)
|
||
|
||
print("\n🔄 Running agent...\n")
|
||
await process_agent_response(thread_id, project_id, thread_manager)
|
||
|
||
print("\n👋 Test completed. Goodbye!")
|
||
|
||
async def process_agent_response(
|
||
thread_id: str,
|
||
project_id: str,
|
||
thread_manager: ThreadManager,
|
||
stream: bool = True,
|
||
model_name: str = "anthropic/claude-3-7-sonnet-latest",
|
||
enable_thinking: Optional[bool] = False,
|
||
reasoning_effort: Optional[str] = 'low',
|
||
enable_context_manager: bool = True
|
||
):
|
||
"""Process the streaming response from the agent."""
|
||
chunk_counter = 0
|
||
current_response = ""
|
||
tool_usage_counter = 0 # Renamed from tool_call_counter as we track usage via status
|
||
|
||
# Create a test sandbox for processing
|
||
sandbox_pass = str(uuid4())
|
||
sandbox = create_sandbox(sandbox_pass)
|
||
print(f"\033[91mTest sandbox created: {str(sandbox.get_preview_link(6080))}/vnc_lite.html?password={sandbox_pass}\033[0m")
|
||
|
||
async for chunk in run_agent(
|
||
thread_id=thread_id,
|
||
project_id=project_id,
|
||
sandbox=sandbox,
|
||
stream=stream,
|
||
thread_manager=thread_manager,
|
||
native_max_auto_continues=25,
|
||
model_name=model_name,
|
||
enable_thinking=enable_thinking,
|
||
reasoning_effort=reasoning_effort,
|
||
enable_context_manager=enable_context_manager
|
||
):
|
||
chunk_counter += 1
|
||
# print(f"CHUNK: {chunk}") # Uncomment for debugging
|
||
|
||
if chunk.get('type') == 'assistant':
|
||
# Try parsing the content JSON
|
||
try:
|
||
# Handle content as string or object
|
||
content = chunk.get('content', '{}')
|
||
if isinstance(content, str):
|
||
content_json = json.loads(content)
|
||
else:
|
||
content_json = content
|
||
|
||
actual_content = content_json.get('content', '')
|
||
# Print the actual assistant text content as it comes
|
||
if actual_content:
|
||
# Check if it contains XML tool tags, if so, print the whole tag for context
|
||
if '<' in actual_content and '>' in actual_content:
|
||
# Avoid printing potentially huge raw content if it's not just text
|
||
if len(actual_content) < 500: # Heuristic limit
|
||
print(actual_content, end='', flush=True)
|
||
else:
|
||
# Maybe just print a summary if it's too long or contains complex XML
|
||
if '</ask>' in actual_content: print("<ask>...</ask>", end='', flush=True)
|
||
elif '</complete>' in actual_content: print("<complete>...</complete>", end='', flush=True)
|
||
else: print("<tool_call>...</tool_call>", end='', flush=True) # Generic case
|
||
else:
|
||
# Regular text content
|
||
print(actual_content, end='', flush=True)
|
||
current_response += actual_content # Accumulate only text part
|
||
except json.JSONDecodeError:
|
||
# If content is not JSON (e.g., just a string chunk), print directly
|
||
raw_content = chunk.get('content', '')
|
||
print(raw_content, end='', flush=True)
|
||
current_response += raw_content
|
||
except Exception as e:
|
||
print(f"\nError processing assistant chunk: {e}\n")
|
||
|
||
elif chunk.get('type') == 'tool': # Updated from 'tool_result'
|
||
# Add timestamp and format tool result nicely
|
||
tool_name = "UnknownTool" # Try to get from metadata if available
|
||
result_content = "No content"
|
||
|
||
# Parse metadata - handle both string and dict formats
|
||
metadata = chunk.get('metadata', {})
|
||
if isinstance(metadata, str):
|
||
try:
|
||
metadata = json.loads(metadata)
|
||
except json.JSONDecodeError:
|
||
metadata = {}
|
||
|
||
linked_assistant_msg_id = metadata.get('assistant_message_id')
|
||
parsing_details = metadata.get('parsing_details')
|
||
if parsing_details:
|
||
tool_name = parsing_details.get('xml_tag_name', 'UnknownTool') # Get name from parsing details
|
||
|
||
try:
|
||
# Content is a JSON string or object
|
||
content = chunk.get('content', '{}')
|
||
if isinstance(content, str):
|
||
content_json = json.loads(content)
|
||
else:
|
||
content_json = content
|
||
|
||
# The actual tool result is nested inside content.content
|
||
tool_result_str = content_json.get('content', '')
|
||
# Extract the actual tool result string (remove outer <tool_result> tag if present)
|
||
match = re.search(rf'<{tool_name}>(.*?)</{tool_name}>', tool_result_str, re.DOTALL)
|
||
if match:
|
||
result_content = match.group(1).strip()
|
||
# Try to parse the result string itself as JSON for pretty printing
|
||
try:
|
||
result_obj = json.loads(result_content)
|
||
result_content = json.dumps(result_obj, indent=2)
|
||
except json.JSONDecodeError:
|
||
# Keep as string if not JSON
|
||
pass
|
||
else:
|
||
# Fallback if tag extraction fails
|
||
result_content = tool_result_str
|
||
|
||
except json.JSONDecodeError:
|
||
result_content = chunk.get('content', 'Error parsing tool content')
|
||
except Exception as e:
|
||
result_content = f"Error processing tool chunk: {e}"
|
||
|
||
print(f"\n\n🛠️ TOOL RESULT [{tool_name}] → {result_content}")
|
||
|
||
elif chunk.get('type') == 'status':
|
||
# Log tool status changes
|
||
try:
|
||
# Handle content as string or object
|
||
status_content = chunk.get('content', '{}')
|
||
if isinstance(status_content, str):
|
||
status_content = json.loads(status_content)
|
||
|
||
status_type = status_content.get('status_type')
|
||
function_name = status_content.get('function_name', '')
|
||
xml_tag_name = status_content.get('xml_tag_name', '') # Get XML tag if available
|
||
tool_name = xml_tag_name or function_name # Prefer XML tag name
|
||
|
||
if status_type == 'tool_started' and tool_name:
|
||
tool_usage_counter += 1
|
||
print(f"\n⏳ TOOL STARTING #{tool_usage_counter} [{tool_name}]")
|
||
print(" " + "-" * 40)
|
||
# Return to the current content display
|
||
if current_response:
|
||
print("\nContinuing response:", flush=True)
|
||
print(current_response, end='', flush=True)
|
||
elif status_type == 'tool_completed' and tool_name:
|
||
status_emoji = "✅"
|
||
print(f"\n{status_emoji} TOOL COMPLETED: {tool_name}")
|
||
elif status_type == 'finish':
|
||
finish_reason = status_content.get('finish_reason', '')
|
||
if finish_reason:
|
||
print(f"\n📌 Finished: {finish_reason}")
|
||
# else: # Print other status types if needed for debugging
|
||
# print(f"\nℹ️ STATUS: {chunk.get('content')}")
|
||
|
||
except json.JSONDecodeError:
|
||
print(f"\nWarning: Could not parse status content JSON: {chunk.get('content')}")
|
||
except Exception as e:
|
||
print(f"\nError processing status chunk: {e}")
|
||
|
||
|
||
# Removed elif chunk.get('type') == 'tool_call': block
|
||
|
||
# Update final message
|
||
print(f"\n\n✅ Agent run completed with {tool_usage_counter} tool executions")
|
||
|
||
if __name__ == "__main__":
|
||
import asyncio
|
||
|
||
# Configure any environment variables or setup needed for testing
|
||
load_dotenv() # Ensure environment variables are loaded
|
||
|
||
# Run the test function
|
||
asyncio.run(test_agent()) |